首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so‐called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position‐restrained MD simulations. Our conclusions indicate that the sole mobility of α9 helix side‐chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by α5 helix movement. The role of selected α5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
Abstract

Systems of mixed polymer brushes (polystyrene–polyethylene oxide, PS–PEO) uniformly grafted on solid substrate were investigated by coarse-grained molecular dynamics simulations. The effects of grafting density and relatively degree of polymerisation of PS and PEO on the switching property of PS–PEO mixed polymer brushes in water and solvent are explored and discussed. Simulation results indicate that PS dominated the thickness of PS–PEO mixed polymer brushes in different solvents, which can be controlled by adjusting the grafting density. Brush heights of mixed PS–PEO polymer brushes fluctuate in different solvents when grafting density varies. The chemical composition of the very top surface of these mixed polymer brushes are largely determined by the relative polymerisation degree of PS and PEO.  相似文献   

4.
5.
Paenibacillus polymyxa β-glucosidase B (BglB), belongs to a GH family 1, is a monomeric enzyme that acts as an exo-β-glucosidase hydrolysing cellobiose and cellodextrins of higher degree of polymerization using retaining mechanism. A molecular dynamics (MD) simulation was performed at 300 K under periodic boundary condition for 5 ns using the complexes structure obtained from previous docking study, namely BglB-Beta-d-glucose and BglB-Cellobiose. From the root-mean-square deviation analysis, both enzyme complexes were reported to deviate from the initial structure in the early part of the simulation but it was stable afterwards. The root-mean-square fluctuation analysis revealed that the most flexible regions comprised of the residues from 26 to 29, 43 to 53, 272 to 276, 306 to 325 and 364 to 367. The radius of gyration analysis had shown the structure of BglB without substrate became more compact towards the end of the simulation compare to other two complexes. The residues His122 and Trp410 were observed to form stable hydrogen bond with occupancy higher than 10%. In conclusion, the behaviour of BglB enzyme towards the substrate binding was successfully explored via MD simulation approaches.  相似文献   

6.
The interaction between like-charged amino acid residues has been proposed to stabilize the folded state of peptides and proteins, and to modulate the substrate binding and the action mechanism of enzymes. We have used an alanine- and lysine-based peptide as a model system to study the interaction between like charges, and we have performed a 16-nsec molecular dynamics simulation in solution. The calculated potential of mean force for the approach of the lysine's Nzeta atoms showed a minimum at a distance of 0.7 nm, in agreement with the separation probabilities obtained from analysis of protein crystal structures. The analysis of the individual energy components showed that the solvent polarization pays for the approach of the like charges and that the van der Waals energies do not contribute significantly. The entropic contributions have been divided in conformational and desolvation terms. Both terms favor the formation of the charge pair. A 10-fold increase in counterion concentration was observed-with respect to its bulk concentration-next to the peptide charges, which helps to stabilize the peptide charges at a close distance.  相似文献   

7.
CstII, a bifunctional (α2,3/8) sialyltransferase from Campylobacter jejuni, is a homotetramer. It has been reported that mutation of the interface residues Phe121 (F121D) or Tyr125 (Y125Q) leads to monomerization and partial loss of enzyme activity, without any change in the secondary or tertiary structures. MD simulations of both tetramer and monomer, with and without bound donor substrate, were performed for the two mutants and WT to understand the reasons for partial loss of activity due to monomerization since the active site is located within each monomer. RMSF values were found to correlate with the crystallographic B-factor values indicating that the simulations are able to capture the flexibility of the molecule effectively. There were no gross changes in either the secondary or tertiary structure of the proteins during MD simulations. However, interface is destabilized by the mutations, and more importantly the flexibility of the lid region (Gly152-Lys190) is affected. The lid region accesses three major conformations named as open, intermediate, and closed conformations. In both Y121Q and F121D mutants, the closed conformation is accessed predominantly. In this conformation, the catalytic base His188 is also displaced. Normal mode analysis also revealed differences in the lid movement in tetramer and monomer. This provides a possible explanation for the partial loss of enzyme activity in both interface mutants. The lid region controls the traffic of substrates and products in and out of the active site, and the dynamics of this region is regulated by tetramerization. Thus, this study provides valuable insights into the role of loop dynamics in enzyme activity of CstII.  相似文献   

8.
9.
Bilayers prepared from sorbitan fatty acid esters (Span) have been frequently used for delivery of drugs including flavonoids. We applied molecular dynamics simulation to characterize the structure of a sorbitan monostearate (Span 60) bilayer in complex with three representative flavones, a subclass of flavonoids. At a low concentration, unsubstituted flavone, the most hydrophobic member, was able to flip over and cross the bilayer with a large diffusion coefficient. At a high concentration, it was accumulated at the bilayer center resulting in a phase separation. The leaflets of the bilayer were pushed in the opposite directions increasing the membrane thickness. Order parameter of the stearate chain of Span 60 was not affected significantly by unsubstituted flavone. In contrast, chrysin with hydroxylated ring A was lined up with the acyl chains of Span 60 with its hydroxyl group facing the membrane surface. Neither flipping nor transbilayer movement were allowed. Diffusion coefficient was only 15–25% of that of unsubstituted flavone and order parameter decreased with the concentration of chrysin. Luteolin, the most hydroxylated member, interacted mainly with the headgroup of Span 60 and assumed many different orientations without crossing the bilayer. Unlike chrysin and unsubstituted flavone the bilayer integrity was disrupted at 50?mol% luteolin. These behaviors and structures of flavones in a Span 60 bilayer can be accounted for by their hydrophobicity and sites of hydroxylation.  相似文献   

10.
The understanding of protein dynamics is one of the major goals of structural biology. A direct link between protein dynamics and function has been provided by x-ray studies performed on ribonuclease A (RNase A) (B. F. Rasmussen et al., Nature, 1992, Vol. 357, pp. 423-424; L. Vitagliano et al., Proteins: Structure, Function, and Genetics, 2002, Vol. 46, pp. 97-104). Here we report a 3 ns molecular dynamics simulation of RNase A in water aimed at characterizing the dynamical behavior of the enzyme. The analysis of local and global motions provides interesting insight on the dynamics/function relationship of RNase A. In agreement with previous crystallographic reports, the present study confirms that the RNase A active site is constituted by rigid (His12, Asn44, Thr45) and flexible (Lys41, Asp83, His119, Asp121) residues. The analysis of the global motions, performed using essential dynamics, shows that the two beta-sheet regions of RNase A move coherently in opposite directions, thus modifying solvent accessibility of the active site, and that the mixed alpha/3(10)-helix (residues 50-60) behaves as a mechanical hinge during the breathing motion of the protein. These data demonstrate that this motion, essential for RNase A substrate binding and release, is an intrinsic dynamical property of the ligand-free enzyme.  相似文献   

11.
We study the unfolding of a parallel G-quadruplex from human telomeric DNA by mechanical stretching using steered molecular dynamics (MD) simulation. We find that the force curves and unfolding processes strongly depend on the pulling sites. With pulling sites located on the sugar-phosphate backbone, the force-extension curve shows a single peak and the unfolding proceeds sequentially. Pulling sites located on the terminal nucleobases lead to a force-extension curve with two peaks and the unfolding is more cooperative. Simulations of the refolding of partially unfolded quadruplexes show very different behavior for the two different pulling modalities. In particular, starting from an unfolded state prepared by nucleobase pulling leads to a long-lived intermediate state whose existence is also corroborated by the free energy profile computed with the Jarzynski equation. Based on this observation, we propose a novel folding pathway for parallel G-quadruplexes with the human telomere sequence.  相似文献   

12.
Silicene has been proven to be a promising material with attractive electronic properties. During the synthesis of silicene, structural defects such as edge crack are likely to be generated and such defects in silicene have impacts on its properties. Herein, molecular dynamics simulations were performed to investigate the mechanical properties of the armchair silicene nanoribbons (ASiNRs) with edge cracks. Our results showed that the mechanical properties of the ASiNRs decrease because of the existence of edge crack. Both the pristine ASiNRs and the ASiNRs with edge cracks show brittle fracture behaviours. The crack length plays an important role in determining the critical strain and fracture strength of the ASiNRs. Moreover, we investigated the effects of strain rate and temperature on the mechanical properties of the ASiNRs with edge cracks. We observed that the increasing strain rate increases the critical strain and fracture strength while decreasing the Young’s modulus. Low-strain rates also changes the expanded directions of cracks in the ASiNRs. We also found that the increasing temperature could significantly decrease the mechanical properties of the ASiNRs with edge cracks.  相似文献   

13.
Beta‐secretase 1 (BACE‐1) is an aspartyl protease implicated in the overproduction of β‐amyloid fibrils responsible for Alzheimer disease. The process of β‐amyloid genesis is known to be pH dependent, with an activity peak between solution pH of 3.5 and 5.5. We have studied the pH‐dependent dynamics of BACE‐1 to better understand the pH dependent mechanism. We have implemented support for graphics processor unit (GPU) accelerated constant pH molecular dynamics within the AMBER molecular dynamics software package and employed this to determine the relative population of different aspartyl dyad protonation states in the pH range of greatest β‐amyloid production, followed by conventional molecular dynamics to explore the differences among the various aspartyl dyad protonation states. We observed a difference in dynamics between double‐protonated, mono‐protonated, and double‐deprotonated states over the known pH range of higher activity. These differences include Tyr 71‐aspartyl dyad proximity and active water lifetime. This work indicates that Tyr 71 stabilizes catalytic water in the aspartyl dyad active site, enabling BACE‐1 activity.  相似文献   

14.
Plasminogen activator inhibitor type 1 (PAI-1) is an inhibitor of plasminogen activators such as tissue-type plasminogen activator or urokinase-type plasminogen activator. For this molecule, different conformations are known. The inhibiting form that interacts with the proteinases is called the active form. The noninhibitory, noncleavable form is called the latent form. X-ray and modeling studies have revealed a large change in position of the reactive center loop (RCL), responsible for the interaction with the proteinases, that is inserted into a beta-sheet (s4A) in the latent form. The mechanism underlying this spontaneous conformational change (half-life = 2 h at 37 degrees C) is not known in detail. This investigation attempts to predict a transition path from the active to the latent structure at the atomic level, by using simulation techniques. Together with targeted molecular dynamics (TMD), a plausible assumption on a rigid body movement of the RCL was applied to define an initial guess for an intermediate. Different pathways were simulated, from the active to the intermediate, from the intermediate to the latent structure and vice versa under different conditions. Equilibrium simulations at different steps of the path also were performed. The results show that a continuous pathway from the active to the latent structure can be modeled. This study also shows that this approach may be applied in general to model large conformational changes in any kind of protein for which the initial and final three-dimensional structure is known.  相似文献   

15.
An MD simulation of the system carboxypeptidase A (CPA) with the tetrapeptide Val-Leu-Phe-Phe has been performed in order to learn about the substrate disposition just prior to nucleophilic attack. We have explored the model in which the substrate does not substitute the zinc-coordinated water (the “water” mechanism). The simulations do suggest as feasible that the Zn-OH2 group performs a nucleophilic attack on the Phe-Phe peptidic bond. We have also investigated the model in which the carbonyl oxygen displaces the zinc-coordinated water. In this case the substrate and Glu-270 orient themselves to allow an anhydride intermediate during the peptidic bond cleavage (the “anhydride” mechanism). Based on the results of the simulations, both “water” and “anhydride” mechanisms are structurally feasible, although the former model seems more probable on chemical grounds. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
An understanding of the mechanism of DNA interactions with gold nanoparticles is useful in today medicine applications. We have performed a molecular dynamics simulation on a B-DNA duplex (CCTCAGGCCTCC) in the vicinity of a gold nanoparticle with a truncated octahedron structure composed of 201 gold atoms (diameter ~1.8 nm) to investigate gold nanoparticle (GNP) effects on the stability of DNA. During simulation, the nanoparticle is closed to DNA and phosphate groups direct the particles into the major grooves of the DNA molecule. Because of peeling and untwisting states that are occur at end of DNA, the nucleotide base lies flat on the surface of GNP. The configuration entropy is estimated using the covariance matrix of atom-positional fluctuations for different bases. The results show that when a gold nanoparticle has interaction with DNA, entropy increases. The results of conformational energy and the hydrogen bond numbers for DNA indicated that DNA becomes unstable in the vicinity of a gold nanoparticle. The radial distribution function was calculated for water hydrogen–phosphate oxygen pairs. Almost for all nucleotide, the presence of a nanoparticle around DNA caused water molecules to be released from the DNA duplex and cations were close to the DNA.  相似文献   

17.
As protein crystals generally possess a high water content, it is assumed that the behaviour of a protein in solution and in crystal environment is very similar. This assumption can be investigated by molecular dynamics (MD) simulation of proteins in the different environments. Two 2ns simulations of hen egg white lysozyme (HEWL) in crystal and solution environment are compared to one another and to experimental data derived from both X-ray and NMR experiments, such as crystallographic B-factors, NOE atom–atom distance bounds, 3JH N-coupling constants, and 1H-15N bond vector order parameters. Both MD simulations give very similar results. The crystal simulation reproduces X-ray and NMR data slightly better than the solution simulation.  相似文献   

18.
The effect of organic solvent on the structure and dynamics of proteins was investigated by multiple molecular dynamics simulations (1 ns each) of Candida rugosa lipase in water and in carbon tetrachloride. The choice of solvent had only a minor structural effect. For both solvents the open and the closed conformation of the lipase were near to their experimental X-ray structures (C rms deviation 1–1.3 Å). However, the solvents had a highly specific effect on the flexibility of solvent-exposed side chains: polar side chains were more flexible in water, but less flexible in organic solvent. In contrast, hydrophobic residues were more flexible in organic solvent, but less flexible in water. As a major effect solvent changed the dynamics of the lid, a mobile element involved in activation of the lipase, which fluctuated as a rigid body about its average position. While in water the deviations were about 1.6 Å, organic solvent reduced flexibility to 0.9 Å. This increase rigidity was caused by two salt bridges (Lys85–Asp284, Lys75–Asp79) and a stable hydrogen bond (Lys75–Asn 292) in organic solvent. Thus, organic solvents stabilize the lid but render the side chains in the hydrophobic substrate-binding site more mobile. Figure Superimposition of open (black, PDB entry 1CRL) and closed (gray, PDB entry 1TRH) conformers of C. rugosa lipase. The mobile lid is indicatedThis revised version was published online in October 2004 with corrections to the Graphical Abstract.  相似文献   

19.
Various posttranslational modifications like hyperphosphorylation, O-GlcNAcylation, and acetylation have been attributed to induce the abnormal folding in tau protein. Recent in vitro studies revealed the possible involvement of N-glycosylation of tau protein in the abnormal folding and tau aggregation. Hence, in this study, we performed a microsecond long all atom molecular dynamics simulation to gain insights into the effects of N-glycosylation on Asn-359 residue which forms part of the microtubule binding region. Trajectory analysis of the stimulations coupled with essential dynamics and free energy landscape analysis suggested that tau, in its N-glycosylated form tends to exist in a largely folded conformation having high beta sheet propensity as compared to unmodified tau which exists in a large extended form with very less beta sheet propensity. Residue interaction network analysis of the lowest energy conformations further revealed that Phe378 and Lys353 are the functionally important residues in the peptide which helped in initiating the folding process and Phe378, Lys347, and Lys370 helped to maintain the stability of the protein in the folded state.  相似文献   

20.
Plasma membrane of each micro-organism has a unique set of lipid composition as a consequence of the environmental adaptation or a response to exposure to antimicrobial peptides (AMPs) as antibiotic agents. Understanding the relationship between lipid composition and action of antimicrobial peptides or considering how different lipid bilayers respond to AMPs may help us design more effective peptide drugs in the future. In this contribution, we intend to elucidate how two currently used membrane models, namely palmitoyl-oleoyl-phosphtidylglycerol (POPG) and 1-palmitoyl-oleoyl-glycero-phosphocholine (POPC), respond to antimicrobial peptide Piscidin-1 (Pis-1).The computed density profile of the peptide as it moves from the bulk solvent toward the membrane core suggests that Pis-1 penetrates into the POPG bilayer less than the POPC membrane. Furthermore, we showed that the two model membranes used in this study have different behavior in the presence of Pis-1. Hence, we suggest that membrane composition could be an important factor in determining lytic ability of peptide drugs to kill a unique bacterial species.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:37  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号