首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABCC4(ATP-binding cassette transporter family class C4,ABCC4)是ABC蛋白家族成员,主要参与转运机体物质代谢中产生的有机阴离子和一些异型生物质等生物学功能。近年研究发现某些人类肿瘤存在Abcc4基因的拷贝数变异,主要表现为Abcc4基因拷贝数增加和ABCC4蛋白过表达,这些改变与肿瘤发生发展、耐药,以及治疗疗效具有相关性。该文综述了Abcc4基因的拷贝数变异和异常表达与肿瘤生物学特性的关系,探讨ABCC4在肿瘤发生发展中的作用机制。  相似文献   

2.
ABCA4, also known as ABCR or the rim protein, is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters expressed in vertebrate rod and cone photoreceptor cells and localized to outer segment disk membranes. ABCA4 is organized in two tandem halves, each consisting of a transmembrane segment followed successively by a large exocytoplasmic domain, a multispanning membrane domain, and a nucleotide-binding domain. Over 400 mutations in ABCA4 have been linked to Stargardt macular degeneration and related retinal degenerative diseases that cause severe vision loss in affected individuals. Direct binding studies and ATPase activation measurements have identified N-retinylidene-phosphatidylethanolamine, a product generated from the photobleaching of rhodopsin, as the substrate for ABCA4. Mice deficient in ABCA4 accumulate phosphatidylethanolamine, all-trans retinal, and N-retinylidene-phosphatidylethanolamine in photoreceptors and the diretinal pyridinium compound A2E in retinal pigment epithelial cells. On the basis of these studies, ABCA4 is proposed to actively transport or flip N-retinylidene-phosphatidylethanolamine from the lumen to the cytoplasmic side of disc membranes following the photobleaching of rhodopsin. This transport activity insures that retinoids do not accumulate in disc membranes. Disease-linked mutations in ABCA4 that result in diminished transport activity lead to an accumulation of all-trans retinal and N-retinylidene-PE in disc membranes which react to produce A2E precursors. A2E progressively accumulates as lipofuscin deposits in retinal pigment epithelial cells as a result of phagocytosis of outer segment discs. A2E and photo-oxidation products cause RPE cell death and consequently photoreceptor degeneration resulting in a loss in vision in individuals with Stargardt macular degeneration and other retinal degenerative diseases associated with mutations in ABCA4.  相似文献   

3.
ATP-binding cassette subfamily B member 7 (ABCB7) is localized in the inner membrane of mitochondria, playing a critical role in iron metabolism. Here, we determined the structure of the nonhydrolyzable ATP analog adenosine-5′-(β-γ-imido) triphosphate (AMP-PNP) bound human ABCB7 at 3.3 Å by single-particle electron cryo-microscopy (cryo-EM). The AMP-PNP-bound human ABCB7 shows an inverted V-shaped homodimeric architecture with an inward-facing open conformation. One AMP-PNP molecule and Mg2+ were identified in each nucleotide-binding domain (NBD) of the hABCB7 monomer. Moreover, four disease-causing missense mutations of human ABCB7 have been mapped to the structure, creating a hotspot map for X-linked sideroblastic anemia and ataxia disease. Our results provide a structural basis for further understanding the transport mechanism of the mitochondrial ABC transporter.  相似文献   

4.
The role of ATP-binding cassette (ABC) transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM). The best result in the series was obtained with the addition of verapamil (40 μM), which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.  相似文献   

5.
YvcC, a multidrug transporter from Bacillus subtilis, is a member of the ATP-binding cassette superfamily, highly homologous to each half of human multidrug-resistance P-glycoprotein and to several other bacterial half-ABC transporters. Here, the purified recombinant histidine-tagged YvcC has been reconstituted into a lipid bilayer. Controlled and partial detergent removal from YvcC-lipid micelles allowed the production of particularly interesting lipid-detergent-YvcC ring-shaped particles, about 40 nm in diameter, well suited for single particle analysis by cryo-electron microscopy. Furthermore, binding of these histidine-tagged ring-shaped particles to lipid layers functionalized with a Ni(2+)-chelating head group generated a preferential perpendicular orientation, eliminating the missing cone in the final three-dimensional reconstruction. From such analysis, a computed volume has been determined to 2.5 nm resolution giving a detailed insight into the structural organization of this half-ABC transporter within a membrane. The repetitive unit in the ring-shaped particles is consistent with a homodimeric organization of YvcC. Each subunit was composed of three domains: a 5 nm height transmembrane region, a stalk of about 4 nm in height and 2 nm in diameter, and a cytoplasmic lobe of about 5-6 nm in diameter. The latest domain, which fitted with the reported X-ray structure of HisP, was identified as the nucleotide-binding domain (NBD). The 3D reconstruction of the YvcC homodimer well compared with the very recent X-ray crystallographic data on the MsbA homodimer from Escherichia coli, supporting the existence of a central open chamber between the two subunits constituting the homodimer. In addition, the 3D reconstruction of YvcC embedded in a membrane revealed an asymmetric organization of the two NBDs sites within the homodimer, as well as a dimeric interaction between two homodimers.  相似文献   

6.
Puromycin, hygromycin, and geneticin (G418) are antibiotics frequently used to select genetically engineered eukaryotic cells after transfection or transduction. Because intrinsic or acquired high expression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp/ABCB1) and multidrug resistance-associated proteins (MRP/ABCC1), can hamper efficient selection, it is important to know whether these antibiotics are substrates and/or inducers of efflux transporters. Therefore, we investigated the influence of these antibiotics on drug transporter expression by quantitative real-time polymerase chain reaction in the induction model cell line LS180. Moreover, we assessed whether ABC transporters influence the growth inhibitory effects of these antibiotics by proliferation assays using Madin-Darby canine kidney II (MDCKII) cells overexpressing the particular transporter. The results obtained indicate that puromycin and G418 are substrates of several ABC transporters, mainly Pgp/ABCB1. In contrast, hygromycin seems to be no good substrate for any of the ABC transporters investigated. Puromycin induced ABCC1/MRP1, whereas G418 suppressed ABCB1/Pgp, at the messenger RNA (mRNA) level. In contrast, hygromycin had no effect on ABC transporter mRNA expressions. In conclusion, this study emphasizes the significance of ABC transporters for the efficacy of selection processes. Consciousness of the results is supposed to guide the molecular biologist to the right choice of adequate experimental conditions for successful selection of genetically engineered eukaryotic cells.  相似文献   

7.
ATP-binding cassette (ABC) transporters move solutes across membranes and are associated with important diseases, including cystic fibrosis and multi-drug resistance. These molecular machines are energized by their charateristic ABC modules, molecular engines fuelled by ATP hydrolysis. A solution NMR study of a model ABC, Methanococcus jannaschii protein MJ1267, reveals that ADP-Mg binding alters the flexibilities of key ABC motifs and induces allosteric changes in conformational dynamics in the LivG insert, over 30A away from the ATPase active site. (15)N spin relaxation data support a "selected-fit" model for nucleotide binding. Transitions between rigidity and flexibility in key motifs during the ATP hydrolysis cycle may be crucial to mechanochemical energy transduction in ABC transporters. The restriction of correlated protein motions is likely a central mechanism for allosteric communications. Comparison between dynamics data from NMR and X-ray crystallography reveals their overall consistency and complementarity.  相似文献   

8.
9.
The transporter MsbA is a kind of multidrug resistance ATP‐binding cassette transporter that can transport lipid A, lipopolysaccharides, and some amphipathic drugs from the cytoplasmic to the periplasmic side of the inner membrane. In this work, we explored the allosteric pathway of MsbA from the inward‐ to outward‐facing states during the substrate transport process with the adaptive anisotropic network model. The results suggest that the allosteric transitions proceed in a coupled way. The large‐scale closing motions of the nucleotide‐binding domains occur first, accompanied with a twisting motion at the same time, which becomes more obvious in middle and later stages, especially for the later. This twisting motion plays an important role for the rearrangement of transmembrane helices and the opening of transmembrane domains on the periplasmic side that mainly take place in middle and later stages respectively. The topological structure plays an important role in the motion correlations above. The conformational changes of nucleotide‐binding domains are propagated to the transmembrane domains via the intracellular helices IH1 and IH2. Additionally, the movement of the transmembrane domains proceeds in a nonrigid body, and the two monomers move in a symmetrical way, which is consistent with the symmetrical structure of MsbA. These results are helpful for understanding the transport mechanism of the ATP‐binding cassette exporters. Proteins 2015; 83:1643–1653. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and, like its closest homolog ABCA1, belongs to the ABCA subfamily of full-length ABC transporters. ABCA1 promotes cellular cholesterol efflux to lipid-free apolipoprotein acceptors and also inhibits the production of neurotoxic β-amyloid (Aβ) peptides in vitro . The potential functions of ABCA7 in the brain are unknown. This study investigated the ability of ABCA7 to regulate cholesterol efflux to extracellular apolipoprotein acceptors and to modulate Aβ production. The transient expression of ABCA7 in human embryonic kidney cells significantly stimulated cholesterol efflux (fourfold) to apolipoprotein E (apoE) discoidal lipid complexes but not to lipid-free apoE or apoA-I. ABCA7 also significantly inhibited Aβ secretion from Chinese hamster ovary cells stably expressing human amyloid precursor protein (APP) or APP containing the Swedish K670M671→N670L671 mutations when compared with mock-transfected cells. Studies with fluorogenic substrates indicated that ABCA7 had no impact on α-, β-, or γ-secretase activities. Live cell imaging of Chinese hamster ovary cells expressing APP-GFP indicated an apparent retention of APP in a perinuclear location in ABCA7 co-transfected cells. These studies indicate that ABCA7 has the capacity to stimulate cellular cholesterol efflux to apoE discs and regulate APP processing resulting in an inhibition of Aβ production.  相似文献   

11.
The cystic fibrosis transmembrane conductance regulator (CFTR), encoded by the gene mutated in cystic fibrosis patients, belongs to the family of ATP-binding cassette (ABC) proteins, but, unlike other members, functions as a chloride channel. CFTR is activated by protein kinase A (PKA)-mediated phosphorylation of multiple sites in its regulatory domain, and gated by binding and hydrolysis of ATP at its two nucleotide binding domains (NBD1, NBD2). The recent crystal structure of NBD1 from mouse CFTR (Lewis, H.A., S.G. Buchanan, S.K. Burley, K. Conners, M. Dickey, M. Dorwart, R. Fowler, X. Gao, W.B. Guggino, W.A. Hendrickson, et al. 2004. EMBO J. 23:282-293) identified two regions absent from structures of all other NBDs determined so far, a "regulatory insertion" (residues 404-435) and a "regulatory extension" (residues 639-670), both positioned to impede formation of the putative NBD1-NBD2 dimer anticipated to occur during channel gating; as both segments appeared highly mobile and both contained consensus PKA sites (serine 422, and serines 660 and 670, respectively), it was suggested that their phosphorylation-linked conformational changes might underlie CFTR channel regulation. To test that suggestion, we coexpressed in Xenopus oocytes CFTR residues 1-414 with residues 433-1480, or residues 1-633 with 668-1480, to yield split CFTR channels (called 414+433 and 633+668) that lack most of the insertion, or extension, respectively. In excised patches, regulation of the resulting CFTR channels by PKA and by ATP was largely normal. Both 414+433 channels and 633+668 channels, as well as 633(S422A)+668 channels (lacking both the extension and the sole PKA consensus site in the insertion), were all shut during exposure to MgATP before addition of PKA, but activated like wild type (WT) upon phosphorylation; this indicates that inhibitory regulation of nonphosphorylated WT channels depends upon neither segment. Detailed kinetic analysis of 414+433 channels revealed intact ATP dependence of single-channel gating kinetics, but slightly shortened open bursts and faster closing from the locked-open state (elicited by ATP plus pyrophosphate or ATP plus AMPPNP). In contrast, 633+668 channel function was indistinguishable from WT at both macroscopic and microscopic levels. We conclude that neither nonconserved segment is an essential element of PKA- or nucleotide-dependent regulation.  相似文献   

12.
Recently, a putative ATP-binding cassette (ABC) transport system was identified in Bifidobacterium longum NCC2705 that is highly up-regulated during growth on fructose as the sole carbon source. Cloning and expression of the corresponding ORFs (bl0033-0036) result in efficient fructose uptake by bacteria. Sequence analysis reveals high similarity to typical ABC transport systems and suggests that these genes are organized as an operon. Expression of FruE is induced by fructose, ribose, or xylose and is able to bind these sugars with fructose as the preferred substrate. Our data suggest that BL0033-0036 constitute a high affinity fructose-specific ABC transporter of B. longum NCC2705. We thus suggest to rename the coding genes to fruEKFG and the corresponding proteins to FruE (sugar-binding protein), FruK (ATPase subunit), FruF, and FruG (membrane permeases). Furthermore, protein-protein interactions between the components of the transporter complex were determined by GST pulldown and Western blot analysis. This revealed interactions between the membrane subunits FruF and FruG with FruE, which in vivo is located on the external side of the membrane, and with the cytoplasmatic ATPase FruK. This is in line with the proposed model for bacterial ABC sugar transporters.  相似文献   

13.
The cystic fibrosis transmembrane conductance regulator (CFTR) channel is an ion channel responsible for chloride transport in epithelia and it belongs to the class of ABC transporters. The deletion of phenylalanine 508 (F508del) in CFTR is the most common mutation responsible for cystic fibrosis. Little is known about the effect of the mutation in the isolated nucleotide binding domains (NBDs), on dimer dynamics, ATP hydrolysis and even on nucleotide binding. Using molecular dynamics simulations of the human CFTR NBD dimer, we showed that F508del increases, in the prehydrolysis state, the inter-motif distance in both ATP binding sites (ABP) when ATP is bound. Additionally, a decrease in the number of catalytically competent conformations was observed in the presence of F508del. We used the subtraction technique to study the first 300 ps after ATP hydrolysis in the catalytic competent site and found that the F508del dimer evidences lower conformational changes than the wild type. Using longer simulation times, the magnitude of the conformational changes in both forms increases. Nonetheless, the F508del dimer shows lower C-α RMS values in comparison to the wild-type, on the F508del loop, on the residues surrounding the catalytic site and the portion of NBD2 adjacent to ABP1. These results provide evidence that F508del interferes with the NBD dynamics before and after ATP hydrolysis. These findings shed a new light on the effect of F508del on NBD dynamics and reveal a novel mechanism for the influence of F508del on CFTR.  相似文献   

14.
P-glycoprotein is a membrane protein involved in the phenomenon of multidrug resistance. Its activity and transport function have been largely characterized by various biochemical studies and a low-resolution image has been obtained by electron microscopy. Obtaining a high-resolution structure is, however, still remote due to the inherent difficulties in the experimental determination of membrane protein structures. We present here a three-dimensional (3D) atomic model of P-glycoprotein in absence of ATP. This model was obtained using a combination of computational techniques including comparative modeling and rigid body dynamics simulations that embody all available cysteine disulfide crosslinking data characterizing the whole protein in absence of ATP. The model features rather well most of the experimental interresidue distances derived both in the transmembrane domains and in the nucleotide binding domains. The model is also in good agreement with electron microscopy data, particularly in terms of size and topology. It features a large cavity detected in the protein core into which seven ligands were successfully docked. Their predicted affinity correlates well with experimental values. Locations of docked ligands compare favorably with those suggested by cysteine-scanning data. The finding of different positions both for a single ligand and for different ligands corroborates the experimental evidence indicating the existence of multiple drug binding sites. The interactions identified between P-glycoprotein and the docked ligands reveal that different types of interactions such as H-bonds, pi-pi and cation-pi interactions occur in agreement with a recently proposed pharmacophore model of P-glycoprotein ligands. Furthermore, the model also displays a lateral opening located in the transmembrane domains connecting the lipid bilayer to the central cavity. This feature supports rather well the commonly admitted mechanism of substrate uptake from the lipid bilayer. We propose that this 3D model may be an important tool to understand the structure-function relationship of P-glycoprotein.  相似文献   

15.
The nucleotide-induced structural rearrangements in ATP binding cassette (ABC) transporters, leading to substrate translocation, are largely unknown. We have modeled nucleotide binding and release in the vitamin B(12) importer BtuCD using perturbed elastic network calculations and biased molecular dynamics simulations. Both models predict that nucleotide release decreases the tilt between the two transmembrane domains and opens the cytoplasmic gate. Nucleotide binding has the opposite effect. The observed coupling may be relevant for all ABC transporters because of the conservation of nucleotide binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B(12) to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B(12) from the transporter pore.  相似文献   

16.
Frank Scheffel 《BBA》2004,1656(1):57-65
The thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius grows at 60 °C and pH 2-3. The organism can utilize maltose and maltodextrins as energy source that are taken up by an ATP-binding cassette (ABC) import system. Genes encoding a maltose binding protein, MalE, and two membrane-integral subunits, MalF and MalG, are clustered on the chromosome but a malK gene translating into a cognate ATPase subunit is lacking. Here we report the cloning of malK from genomic DNA by using the msiK gene of Streptomyces lividans as a probe. Purified MalK exhibited a spontaneous ATPase activity with a Vmax of 0.13 μmol Pi/min/mg and a Km of 330 μM that was optimal at the growth temperature of the organism. Coexpression of malK, malF and malG in Escherichia coli resulted in the formation of a complex that could be coeluted from an affinity matrix after solubilization of membranes with dodecylmaltoside. Proteoliposomes prepared from the MalFGK complex and preformed phospholipid vesicles of A. acidocaldarius displayed a low intrinsic ATPase activity that was stimulated sevenfold by maltose-loaded MalE, thereby indicating coupling of ATP hydrolysis to substrate translocation. These results provide evidence for MalK being the physiological ATPase subunit of the A. acidocaldarius maltose transporter. Moreover, to our knowledge, this is the first report on the functional reconstitution of an ABC transport system from a thermophilic microorganism.  相似文献   

17.
节肢动物ABC转运蛋白及其介导的杀虫剂抗性   总被引:1,自引:0,他引:1  
腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transporter),简称ABC转运蛋白(ABC transporter),是继细胞色素P450单加氧酶、羧酸酯酶、谷胱甘肽S-转移酶之后又一类参与解毒作用的重要蛋白家族,因其在杀虫剂解毒等方面起着非常重要的作用,近年来逐渐受到广泛关注。ABC转运蛋白是一大类跨膜蛋白,其核心结构通常由4个结构域组成,包括2个高度疏水的跨膜结构域(transmembrane domains , TMD)和2个核苷酸结合域(nucleotide binding domains, NBD)。根据序列相似性和保守结构域,可以把ABC转运蛋白家族分为8个亚家族,每个亚家族的成员数及功能不同。这类蛋白在各种生物体内均有分布,其主要功能包括转运物质、信号传导、细胞表面受体及参与细胞内DNA修复,转录及调节基因的表达过程等。此外,近年来的研究表明,ABC转运蛋白的突变或过表达不仅与节肢动物对化学农药的抗药性密切相关,而且在抗Bt毒素方面也起着非常重要的作用,对转Bt作物造成严重威胁。本文综述了节肢动物ABC转运蛋白的结构,ATP水解介导的作用机制,亚家族的分类、结构及生理功能,以及由ABC转运蛋白介导的抗药性研究进展,旨在深入了解ABC转运蛋白的研究现状及其在节肢动物抗药性方面的作用,为阐明节肢动物抗药性机制提供新的理论依据,对改进农业害虫的抗性监测和治理策略也具有一定的指导意义。  相似文献   

18.
A ciprofloxacin-resistant mutant of Clostridium perfringens, strain VPI-C, which had stable mutations in the topoisomerase genes, accumulated less norfloxacin and ethidium bromide than the wild type, strain VPI. Efflux pump inhibitors both increased the accumulation of ethidium bromide by cells of the mutant and enhanced their sensitivity to this toxic dye. Cloning a gene, which codes for a putative ABC transporter protein (NP_562422) of 527 amino acids, from the mutant strain VPI-C into the wild-type strain VPI not only reduced the accumulation of ethidium bromide by the recombinant strain but also reduced its sensitivity to norfloxacin and ciprofloxacin. Efflux pump inhibitors decreased the rate at which ethidium bromide was removed from the cells of the recombinant strain. It appears that the putative ABC transporter protein (NP_562422) may contribute to extrusion of drugs from C. perfringens.  相似文献   

19.
The yeast a-factor transporter Ste6 is a member of the ABC transporter family and is closely related to human MDR1. We constructed a set of 26 Ste6 mutants using a random mutagenesis approach. Cell fractionation experiments demonstrated that most of the mutants, with the notable exception of those with alterations in TM1, are transported to the plasma membrane, the presumptive site of action of Ste6. Trafficking, therefore, does not seem to be affected in most of the mutants. To identify regions in Ste6 that interact with the ABC transporter "signature motif" (LSGGQ) we screened for intragenic revertants of the LSGGQ mutant M68 (S507N). Suppressor mutations were identified in TM12 and upstream of TM6. Surprisingly, these mutations also suppressed the Walker A mutation G397D, which should be defective in ATP-binding and hydrolysis at NBD1. Photoaffinity labeling experiments with 8-azido-[alpha-32P]ATP showed that ATP binding at NBD2 is reduced by the suppressor mutation in TM12. The experiments further suggest that the two NBDs of Ste6 are not equivalent and affect each other's ability to bind and hydrolyze ATP.  相似文献   

20.
The ATP‐binding cassette (ABC) transporters control placental transfer of several nutrients, steroids, immunological factors, chemicals, and drugs at the maternal‐fetal interface. We and others have demonstrated a gestational age‐dependent expression pattern of two ABC transporters, P‐glycoprotein and breast cancer resistance protein throughout pregnancy. However, no reports have comprehensively elucidated the expression pattern of all 50 ABC proteins, comparing first trimester and term human placentae. We hypothesized that placental ABC transporters are expressed in a gestational‐age dependent manner in normal human pregnancy. Using the TaqMan® Human ABC Transporter Array, we assessed the mRNA expression of all 50 ABC transporters in first (first trimester, n = 8) and third trimester (term, n = 12) human placentae and validated the resulting expression of selected ABC transporters using qPCR, Western blot and immunohistochemistry. A distinct gene expression profile of 30 ABC transporters was observed comparing first trimester vs. term placentae. Using individual qPCR in selected genes, we validated the increased expression of ABCA1 (P < 0.01), ABCA6 (P < 0.001), ABCA9 (P < 0.001) and ABCC3 (P < 0.001), as well as the decreased expression of ABCB11 (P < 0.001) and ABCG4 (P < 0.01) with advancing gestation. One important lipid transporter, ABCA6, was selected to correlate protein abundance and characterize tissue localization. ABCA6 exhibited increased protein expression towards term and was predominantly localized to syncytiotrophoblast cells. In conclusion, expression patterns of placental ABC transporters change as a function of gestational age. These changes are likely fundamental to a healthy pregnancy given the critical role that these transporters play in the regulation of steroidogenesis, immunological responses, and placental barrier function and integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号