首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated from tumor-infiltrating lymphocytes (TIL) and PBL of a lung carcinoma patient several tumor-specific T cell clones displaying similar peptide-MHC tetramer staining and expressing a unique TCR. Although these clones elicited identical functional avidity and similar cytolytic potential, only T cell clones derived from TIL efficiently lysed autologous tumor cells. Interestingly, all of these clones expressed the same T cell surface markers except for the TCR inhibitory molecule CD5, which was expressed at much lower levels in TIL than in PBL. Video-imaging recordings demonstrated that, although both T cell clones could form stable conjugates with tumor cells, the Ca(2+) response occurred in TIL clones only. Significantly, analysis of a panel of circulating clones indicated that antitumor cytolytic activity was inversely proportional to CD5 expression levels. Importantly, CD5 levels in TIL appeared to parallel the signaling intensity of the TCR/peptide-MHC interaction. Thus, in situ regulation of CD5 expression may be a strategy used by CTL to adapt their sensitivity to intratumoral peptide-MHC levels.  相似文献   

2.
Fast dissociation rate of peptide-MHC complexes from TCR has commonly been accepted to cause T cell anergy. In this study, we present evidence that peptides that form transient complexes with HLA-DR1 induce anergy in T cell clones in vitro and specific memory T cells in vivo. We demonstrate that similar to the low densities of long-lived agonist peptide-MHC, short-lived peptide-MHC ligands induce anergy by engagement of approximately 1000 TCR and activation of a similar pattern of intracellular signaling events. These data strongly suggest that short-lived peptides induce anergy by presentation of low densities of peptide-MHC complexes. Moreover, they suggest that the traditional antagonist peptides might also trigger anergy by a similar molecular mechanism. The use of short-lived peptides to induce T cells anergy is a potential strategy for the prevention or treatment of autoimmune diseases.  相似文献   

3.
While in many cases the half-life of T cell receptor (TCR) binding to a particular ligand is a good predictor of activation potential, numerous exceptions suggest that other physical parameter(s) must also play a role. Accordingly, we analyzed the thermodynamics of TCR binding to a series of peptide-MHC ligands, three of which are more stimulatory than their stability of binding would predict. Strikingly, we find that during TCR binding these outliers show anomalously large changes in heat capacity, an indicator of conformational change or flexibility in a binding interaction. By combining the values for heat capacity (DeltaCp) and the half-life of TCR binding (t(1/2)), we find that we can accurately predict the degree of T cell stimulation. Structural analysis shows significant changes in the central TCR contact residue of the peptide-MHC, indicating that structural rearrangements within the TCR-peptide-MHC interface can contribute to T cell activation.  相似文献   

4.
T cell activation depends on extracellular ligation of the T cell receptor (TCR) by peptide-MHC complexes in a synapse between the T cell and an antigen-presenting cell. The process then requires the assembly of signalling complexes between the TCR and the adaptor protein linker for activation of T cells (LAT), and subsequent filamentous actin (F-actin)-dependent TCR cluster formation. Recent progress in each of these areas, made possible by the emergence of new techniques, has forced us to rethink our assumptions and consider some radical new models. These describe the receptor interaction parameters that control T cell responses and the mechanism by which LAT is recruited to the TCR signalling machinery. This is an exciting time in T cell biology, and further innovation in imaging and genomics is likely to lead to a greater understanding of how T cells are activated.  相似文献   

5.
Analysis of the thermodynamics of the interactions between the D3 T-cell receptor (TCR) and its natural ligand, an HIV peptide bound to a HLA-A0201 (HLA-A2) major histocompatibility complex (MHC) protein, shows both similarities and striking differences when compared with the 2B4 TCR binding to its peptide-MHC ligand. The equilibrium thermodynamic parameters of both reactions are consistent with a conformational adjustment at the binding interface during the formation of specific TCR-peptide-MHC complexes. However, osmolytic reagents that dehydrate protein surfaces have profoundly different effects on the strength of the two reactions, indicating that water molecules make very different contributions-enhancing the binding of D3 TCR but weakening the binding of 2B4 TCR. The use of these different mechanisms by TCRs to recognize ligands might be an important means augmenting their inherent cross-reactivity.  相似文献   

6.
It is well established that even small changes in amino acid side chains of antigenic peptide bound to major histocompatibility complex (MHC) protein may completely abrogate recognition of the peptide-MHC (pMHC) complex by the T cell receptor (TCR). Often, however, several nonconservative substitutions in the peptide antigen are accommodated and do not impair its recognition by TCR. For example, a preponderance of natural sequence variants of the human immunodeficiency virus p17 Gag-derived peptide SLYNTVATL (SL9) are recognized by cytotoxic T lymphocytes, which implies that interactions with SL9 variants are degenerate both with respect to the class I MHC molecule and with respect to TCR. Here we study the molecular basis for this degenerate recognition of SL9 variants. We show that several SL9 variants bind comparably well to soluble HLA-A2 and to a particular soluble TCR and that these variants are active in the cognate cytotoxicity assay. Natural SL9 variation is restricted by its context in the HIV p17 matrix protein. High resolution crystal structures of seven selected SL9 variants bound to HLA-A2 all have remarkably similar peptide conformations and side-chain dispositions outside sites of substitution. This preservation of the peptide conformation despite epitope variations suggests a mechanism for the observed degeneracy in pMHC recognition by TCR and may contribute to the persistence of SL9-mediated immune responses in chronically infected individuals.  相似文献   

7.
TCR engagement by peptide-MHC class I (pMHC) ligands induces a conformational change (Deltac) in CD3 (CD3Deltac) that contributes to T cell signaling. We found that when this interaction took place between primary T lineage cells and APCs, the CD8 coreceptor was required to generate CD3Deltac. Interestingly, neither enhancement of Ag binding strength nor Src kinase signaling explained this coreceptor activity. Furthermore, Ag-induced CD3Deltac was developmentally attenuated by the increase in sialylation that accompanies T cell maturation and limits CD8 activity. Thus, both weak and strong ligands induced CD3Deltac in preselection thymocytes, but only strong ligands were effective in mature T cells. We propose that CD8 participation in the TCR/pMHC interaction can physically regulate CD3Deltac induction by "translating" productive Ag encounter from the TCR to the CD3 complex. This suggests one mechanism by which the developmentally regulated variation in CD8 sialylation may contribute to the developmental tuning of T cell sensitivity.  相似文献   

8.
The serial engagement model provides an attractive and plausible explanation for how a typical antigen presenting cell, exhibiting a low density of peptides recognized by a T cell, can initiate T cell responses. If a single peptide displayed by a major histocompatibility complex (MHC) can bind, sequentially, to different T cell receptors (TCR), then a few peptides can activate many receptors. To date, arguments supporting and questioning the prevalence of serial engagement have centered on the down-regulation of TCR after contact of T cells with antigen presenting cells. Recently, the existence of serial engagement has been challenged by the demonstration that engagement of TCR can down-regulate nonengaged bystander TCR. Here we show that for binding and dissociation rates that characterize interactions between T cell receptors and peptide-MHC, substantial serial engagement occurs. The result is independent of mechanisms and measurements of receptor down-regulation. The conclusion that single peptide-MHC engage many TCR, before diffusing out of the contact region between the antigen-presenting cell and the T cell, is based on a general first passage time calculation for a particle alternating between states in which different diffusion coefficients govern its transport.  相似文献   

9.
10.
The interaction between TCRs and peptides presented by MHC molecules determines the specificity of the T cell-mediated immune response. To elucidate the biologically important structural features of this interaction, we generated TCR beta-chain transgenic mice using a TCR derived from a T cell clone specific for the immunodominant peptide of vesicular stomatitis virus (RGYVYQGL, VSV8) presented by H-2K(b). We immunized these mice with VSV8 or analogs substituted at TCR contact residues (positions 1, 4, and 6) and analyzed the CDR3alpha sequences of the elicited T cells. In VSV8-specific CTLs, we observed a highly conserved residue at position 93 of CDR3alpha and preferred Jalpha usage, indicating that multiple residues of CDR3alpha are critical for recognition of the peptide. Certain substitutions at peptide position 4 induced changes at position 93 and in Jalpha usage, suggesting a potential interaction between CDR3alpha and position 4. Cross-reactivity data revealed the foremost importance of the Jalpha region in determining Ag specificity. Surprisingly, substitution at position 6 of VSV8 to a negatively charged residue induced a change at position 93 of CDR3alpha to a positively charged residue, suggesting that CDR3alpha may interact with position 6 in certain circumstances. Analogous interactions between the TCR alpha-chain and residues in the C-terminal half of the peptide have not yet been revealed by the limited number of TCR/peptide-MHC crystal structures reported to date. The transgenic mouse approach allows hundreds of TCR/peptide-MHC interactions to be examined comparatively easily, thus permitting a wide-ranging analysis of the possibilities for Ag recognition in vivo.  相似文献   

11.
T-cell receptors (TCRs) upon binding to peptide-MHC ligands transduce signals in T lymphocytes. Tyrosine phosphorylations in the cytoplasmic domains of the CD3 (gammadeltaepsilon) and zeta subunits of the TCR complex by Src family kinases initiate the signaling cascades via docking and activation of ZAP-70 kinase and other signaling components. We examined the role of the low-density detergent-insoluble membranes (DIMs) in TCR signaling. Using mouse thymocytes as a model, we characterized the structural organization of DIMs in detail. We then demonstrated that TCR engagement triggered an immediate increase in the amount of TCR/CD3 present in DIMs, which directly involves the engaged receptor complexes. TCR/CD3 recruitment is accompanied by the accumulation of a series of prominent tyrosine-phosphorylated substrates and by an increase of the Lck activity in DIMs. Upon TCR stimulation, the DIM-associated receptor complexes are highly enriched in the hyperphosphorylated p23 zeta chains, contain most of the TCR/CD3-associated, phosphorylation-activated ZAP-70 kinases and seem to integrate into higher order, multiple tyrosine-phosphorylated substrate-containing protein complexes. The TCR/CD3 recruitment was found to depend on the activity of Src family kinases. We thus provide the first demonstration of recuitment of TCR/CD3 to DIMs upon receptor stimulation and propose it as a mechanism whereby TCR engagement is coupled to downstream signaling cascades.  相似文献   

12.
Hepatitis C virus (HCV) infection frequently persists despite eliciting substantial virus-specific immune responses. Thus, HCV infection provides a setting in which to investigate mechanisms of immune escape that allow for viral persistence. Viral amino acid substitutions resulting in decreased MHC binding or impaired Ag processing of T cell epitopes reduce Ag density on the cell surface, permitting evasion of T cell responses in chronic viral infection. Substitutions in viral epitopes that alter TCR contact residues frequently result in escape, but via unclear mechanisms because such substitutions do not reduce surface presentation of peptide-MHC complexes and would be expected to prime T cells with new specificities. We demonstrate that a known in vivo HCV mutation involving a TCR contact residue significantly diminishes T cell recognition and, in contrast to the original sequence, fails to effectively prime naive T cells. This mutant epitope thus escapes de novo immune recognition because there are few highly specific cognate TCR among the primary human T cell repertoire. This example is the first on viral immune escape via exploitation of a "hole" in the T cell repertoire, and may represent an important general mechanism of viral persistence.  相似文献   

13.
The crystal structure of a mouse T-cell antigen receptor (TCR) Fv fragment complexed to the Fab fragment of a specific anti-clonotypic antibody has been determined to 2.6 A resolution. The polypeptide backbone of the TCR V alpha domain is very similar to those of other crystallographically determined V alphas, whereas the V beta structure is so far unique among TCR V beta domains in that it displays a switch of the c" strand from the inner to the outer beta-sheet. The beta chain variable region of this TCR antigen-binding site is characterized by a rather elongated third complementarity-determining region (CDR3beta) that packs tightly against the CDR3 loop of the alpha chain, without leaving any intervening hydrophobic pocket. Thus, the conformation of the CDR loops with the highest potential diversity distinguishes the structure of this TCR antigen-binding site from those for which crystallographic data are available. On the basis of all these results, we infer that a significant conformational change of the CDR3beta loop found in our TCR is required for binding to its cognate peptide-MHC ligand.  相似文献   

14.
Engagement of the Ag receptor on naive CD8+ T cells by specific peptide-MHC complex triggers their activation/expansion/differentiation into effector CTL. The frequency of Ag-specific CD8+ T cells can normally be determined by the binding of specific peptide-MHC tetramer complexes to TCR. In this study we demonstrate that, shortly after Ag activation, CD8+ T cells transiently lose the capacity to efficiently bind peptide-MHC tetramer complexes. This transient loss of tetramer binding, which occurs in response to naturally processed viral peptide during infection in vitro and in vivo, is associated with reduced signaling through the TCR and altered/diminished effector activity. This change in tetramer binding/effector response is likewise associated with a change in cell surface TCR organization. These and related results suggest that early during CD8+ T cell activation, there is a temporary alteration in both cell surface Ag receptor display and functional activity that is associated with a transient loss of cognate tetramer binding.  相似文献   

15.
We quantitated the number of peptide-class II MHC complexes required to affect the deletion or activation of 3A9 TCR transgenic thymocytes. Deletion of immature double positive thymocytes was very sensitive, taking place with approximately three peptide-MHC complexes per APC. However, the activation of mature CD4+ thymocytes required 100-fold more complexes per APC. Therefore, a "biochemical margin of safety" exists at the level of the APC. To be activated, autoreactive T cells in peripheral lymphoid tissues require a relatively high level of peptide-MHC complexes.  相似文献   

16.
T cell receptors (TCR) recognize antigenic peptides displayed by MHC molecules. Whereas T-cell recognition of foreign peptides is essential for immune defense against microbial pathogens, recognition of self-peptides can cause autoimmune disease. Structural studies of anti-foreign TCR showed remarkable similarities in the topology of TCR binding to peptide-MHC, which maximize interactions with the ligand. However, recent structures involving autoimmune and tumor-specific TCR have revealed that they engage self-peptide-MHC with different topologies, which are suboptimal for TCR binding. These differences might reflect the distinct selection pressures exerted on anti-microbial versus autoreactive T cells. The structures also provide new insights into TCR cross-reactivity, which can contribute to autoimmunity by increasing the likelihood of self-peptide-MHC recognition.  相似文献   

17.
Human natural killer cells and a subset of T cells express a repertoire of killer cell immunoglobulin receptors (KIRs) that recognize major histocompatibility complex (MHC) class I molecules. KIRs and T cell receptors (TCRs) bind in a peptide-dependent manner to overlapping regions of peptide-MHC class I complexes. KIRs with two immunoglobulin domains (KIR2Ds) recognize distinct subsets of HLA-C alleles. Here we use surface plasmon resonance to study the binding of soluble forms of KIR2DL1 and KIR2DL3 to several peptide-HLA-Cw7 complexes. KIR2DL3 bound to the HLA-Cw7 allele presenting the peptide RYRPGTVAL with a 1:1 stoichiometry and an affinity (K(d) approximately 7 microM at 25 degrees C) within the range of values measured for other cell-cell recognition molecules, including the TCR. Although KIR2DL1 is reported not to recognize the HLA-Cw7 allele in functional assays, it bound RYRPGTVAL/HLA-Cw7, albeit with a 10-20-fold lower affinity. TCR/peptide-MHC interactions are characterized by comparatively slow kinetics and unfavorable entropic changes (Willcox, B. E., Gao, G. F., Wyer, J. R. , Ladbury, J. E., Bell, J. I., Jakobsen, B. K., and van der Merwe, P. A. (1999) Immunity 10, 357-365), suggesting that binding is accompanied by conformational adjustments. In contrast, we show that KIR2DL3 binds RYRPGTVAL/HLA-Cw7 with fast kinetics and a favorable binding entropy, consistent with rigid body association. These results indicate that KIR/peptide-MHC class I interactions have properties typical of other cell-cell recognition molecules, and they highlight the unusual nature of TCR/peptide-MHC recognition.  相似文献   

18.
Initial adhesive contacts between T lymphocytes and dendritic cells (DCs) facilitate recognition of peptide-MHC complexes by the TCR. In this report, we studied the dynamic behavior of adhesion and Ag receptors on DCs during initial contacts with T-cells. Adhesion molecules LFA-1- and ICAM-1,3-GFP as well as MHC class II-GFP molecules were very rapidly concentrated at the DC contact area. Binding of ICAM-3, and ICAM-1 to a lesser extent, to LFA-1 expressed by mature but not immature DC, induced MHC-II clustering into the immune synapse. Also, ICAM-3 binding to DC induced the activation of the Vav1-Rac1 axis, a regulatory pathway involved in actin cytoskeleton reorganization, which was essential for MHC-II clustering on DCs. Our results support a model in which ICAM-mediated MHC-II clustering on DC constitutes a priming mechanism to enhance antigen presentation to T-cells.  相似文献   

19.
Noncognate or self peptide-MHC (pMHC) ligands productively interact with T-cell receptor (TCR) and are always in a large access over the cognate pMHC on the surface of antigen presenting cells. We assembled soluble cognate and noncognate pMHC class I (pMHC-I) ligands at designated ratios on various scaffolds into oligomers that mimic pMHC clustering and examined how multivalency and density of the pMHCs in model clusters influences the binding to live CD8 T cells and the kinetics of TCR signaling. Our data demonstrate that the density of self pMHC-I proteins promotes their interaction with CD8 co-receptor, which plays a critical role in recognition of a small number of cognate pMHC-I ligands. This suggests that MHC clustering on live target cells could be utilized as a sensitive mechanism to regulate T cell responsiveness.  相似文献   

20.
The stochastic dynamics of T cell receptor (TCR) signaling are studied using a mathematical model intended to capture kinetic proofreading (sensitivity to ligand-receptor binding kinetics) and negative and positive feedback regulation mediated, respectively, by the phosphatase SHP1 and the MAP kinase ERK. The model incorporates protein-protein interactions involved in initiating TCR-mediated cellular responses and reproduces several experimental observations about the behavior of TCR signaling, including robust responses to as few as a handful of ligands (agonist peptide-MHC complexes on an antigen-presenting cell), distinct responses to ligands that bind TCR with different lifetimes, and antagonism. Analysis of the model indicates that TCR signaling dynamics are marked by significant stochastic fluctuations and bistability, which is caused by the competition between the positive and negative feedbacks. Stochastic fluctuations are such that single-cell trajectories differ qualitatively from the trajectory predicted in the deterministic approximation of the dynamics. Because of bistability, the average of single-cell trajectories differs markedly from the deterministic trajectory. Bistability combined with stochastic fluctuations allows for switch-like responses to signals, which may aid T cells in making committed cell-fate decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号