首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 886 毫秒
1.
P elements are a family of transposable elements found in Drosophila that move by using a cut-and-paste mechanism and that encode a transposase protein that uses GTP as a cofactor for transposition. Here we used atomic force microscopy to visualize the initial interaction of transposase protein with P element DNA. The transposase first binds to one of the two P element ends, in the presence or absence of GTP, prior to synapsis. In the absence of GTP, these complexes remain stable but do not proceed to synapsis. In the presence of GTP or nonhydrolyzable GTP analogs, synapsis happens rapidly, whereas DNA cleavage is slow. Both atomic force microscopy and standard biochemical methods have been used to show that the P element transposase exists as a pre-formed tetramer that initially binds to either one of the two P element ends in the absence of GTP prior to synapsis. This initial single end binding may explain some of the aberrant P element-induced rearrangements observed in vivo, such as hybrid end insertion. The allosteric effect of GTP in promoting synapsis by P element transposase may be to orient a second site-specific DNA binding domain in the tetramer allowing recognition of a second high affinity transposase-binding site at the other transposon end.  相似文献   

2.
3.
4.
The Sleeping Beauty (SB) transposon is the most widely used DNA transposon in genetic applications and is the only DNA transposon thus far in clinical trials for human gene therapy. In the absence of atomic level structural information, the development of SB transposon relied primarily on the biochemical and genetic homology data. While these studies were successful and have yielded hyperactive transposases, structural information is needed to gain a mechanistic understanding of transposase activity and guides to further improvement. We have initiated a structural study of SB transposase using Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) spectroscopy to investigate the properties of the DNA‐binding domain of SB transposase in solution. We show that at physiologic salt concentrations, the SB DNA‐binding domain remains mostly unstructured but its N‐terminal PAI subdomain forms a compact, three‐helical structure with a helix‐turn‐helix motif at higher concentrations of NaCl. Furthermore, we show that the full‐length SB DNA‐binding domain associates differently with inner and outer binding sites of the transposon DNA. We also show that the PAI subdomain of SB DNA‐binding domain has a dominant role in transposase's attachment to the inverted terminal repeats of the transposon DNA. Overall, our data validate several earlier predictions and provide new insights on how SB transposase recognizes transposon DNA.  相似文献   

5.
NR4A nuclear receptors are a diverse group of orphan nuclear receptors with critical roles in regulating cell proliferation and cell differentiation. The ortholog of the NR4A nuclear receptor in Caenorhabditis elegans, NHR‐6, also has a role in cell proliferation and cell differentiation during organogenesis of the spermatheca. Here we show that NHR‐6 is able to bind the canonical NR4A monomer response element and can transactivate from this site in mammalian HEK293 cells. Using a functional GFP‐tagged NHR‐6 fusion, we also demonstrate that NHR‐6 is nuclear localized during development of the spermatheca. Mutation of the DNA‐binding domain of NHR‐6 abolishes its activity in genetic rescue assays, demonstrating a requirement for the DNA‐binding domain. This study represents the first genetic demonstration of an in vivo requirement for an NR4A nuclear receptor DNA‐binding domain in a whole organism. genesis 48:485–491, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The master regulator CsgD switches planktonic growth to biofilm formation by activating synthesis of curli fimbriae and cellulose in Enterobacteriaceae. CsgD was classified to be the LuxR response regulatory family, while its cognate sensor histidine kinase has not been identified yet. CsgD consists of a C‐terminal DNA binding domain and an N‐terminal regulatory domain that provokes the upstream signal transduction to further modulate its function. We provide the crystal structure of Salmonella Typhimurium CsgD regulatory domain, which reveals an atypical β5α5 response regulatory receiver domain folding with the α2 helix representing as a disorder loop compared to the LuxR/FixJ canonical response regulator, and the structure indicated a noteworthy α5 helix similar to the non‐canonical master regulator VpsT receiver domain α6. CsgD regulatory domain assembles with two dimerization interfaces mainly through α1 and α5, which has shown similarity to the c‐di‐GMP independent and stabilized dimerization interface of VpsT from Vibrio cholerae respectively. The potential phosphorylation site D59 is directly involved in the interaction of interfaces I and mutagenesis studies indicated that both dimerization interfaces could be crucial for CsgD activity. The structure reveals important molecular details for the dimerization assembly of CsgD and will shed new insight into its regulation mechanism.  相似文献   

7.
Intact AraC protein is poorly soluble and difficult to purify, whereas its dimerization domain is the opposite. Unexpectedly, the DNA binding domain of AraC proved also to be soluble in cells when overproduced and is easily purified to homogeneity. The DNA binding affinity of the DNA binding domain for its binding site could not be measured by electrophoretic mobility shift because of its rapid association and dissociation rates, but its affinity could be measured with a fluorescence assay and was found to have a dissociation constant of 1 x 10(-8)M in 100 mM KCl. The binding of monomers of the DNA binding domain to adjacent half-sites occurs without substantial positive or negative cooperativity. A simple analysis relates the DNA binding affinities of monomers of DNA binding domain and normal dimeric AraC protein.  相似文献   

8.
E L Beall  D C Rio 《The EMBO journal》1998,17(7):2122-2136
P elements transpose by a cut-and-paste mechanism. Donor DNA cleavage mediated by transposase generates 17 nucleotide (nt) 3' single-strand extensions at the P element termini which, when present on oligonucleotide substrates, stimulate both the strand-transfer and disintegration reactions in vitro. A significant amount of the strand-transfer products are the result of double-ended integration. Chemical DNA modification-interference experiments indicate that during the strand-transfer reaction, P element transposase contacts regions of the substrate DNA that include the transposase binding site and the duplex portion of the 31 bp inverted repeat, as well as regions of the terminal 17 nt single-stranded DNA. Together these data suggest that the P element transposase protein contains two DNA-binding sites and that the active oligomeric form of the transposase protein is at least a dimer.  相似文献   

9.
The structural maintenance of chromosomes (SMC) family proteins are commonly found in the multiprotein complexes involved in chromosome organization, including chromosome condensation and sister chromatid cohesion. These proteins are characterized by forming a V‐shaped homo‐ or heterodimeric structure with two long coiled‐coil arms having two ATPase head domains at the distal ends. The hinge domain, located in the middle of the coiled coil, forms the dimer interface. In addition to being the dimerization module, SMC hinges appear to play other roles, including the gateway function for DNA entry into the cohesin complex. Herein, we report the homodimeric structure of the hinge domain of Escherichia coli MukB, which forms a prokaryotic condensin complex with two non‐SMC subunits, MukE and MukF. In contrast with SMC hinge of Thermotoga maritima which has a sizable central hole at the dimer interface, MukB hinge forms a constricted dimer interface lacking a hole. Under our assay conditions, MukB hinge does not interact with DNA in accordance with the absence of a notable positively charged surface patch. The function of MukB hinge appears to be limited to dimerization of two copies of MukB molecules. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The mannitol transporter enzyme IIMtl of the bacterial phosphotransferase system is a multi‐domain protein that catalyzes mannitol uptake and phosphorylation. Here we investigated the domain association between cytosolic A and B domains of enzyme IIMtl, which are natively connected in Escherichia coli, but separated in Thermoanaerobacter tengcongensis. NMR backbone assignment and residual dipolar couplings indicated that backbone folds were well conserved between the homologous domains. The equilibrium binding of separately expressed domains, however, exhibited ~28‐fold higher affinity compared to the natively linked ones. Phosphorylation of the active site loop significantly contributed to the binding by reducing conformational dynamics at the binding interface, and a few key mutations at the interface were critical to further stabilize the complex by hydrogen bonding and hydrophobic interactions. The affinity increase implicated that domain associations in cell could be maintained at an optimal level regardless of the linker.  相似文献   

11.
Escherichia coli DNA topoisomerase I (TopA) contains a 67 kDa N‐terminal catalytic domain and a 30 kDa C‐terminal zinc‐binding region (ZD domain) which has three adjacent tetra‐cysteine zinc‐binding motifs. Previous studies have shown that E. coli TopA can bind both iron and zinc, and that iron binding in TopA results in failure to unwind the negatively supercoiled DNA. Here, we report that each E. coli TopA monomer binds one atom of iron via the first two zinc‐binding motifs in ZD domain and both the first and second zinc‐binding motifs are required for iron binding in TopA. The site‐directed mutagenesis studies further reveal that while the mutation of the third zinc‐binding motif has very little effect on TopA's activity, mutation of the first two zinc‐binding motifs in TopA greatly diminishes the topoisomerase activity in vitro and in vivo, indicating that the first two zinc‐binding motifs in TopA are crucial for its function. The DNA‐binding activity assay and intrinsic tryptophan fluorescence measurements show that iron binding in TopA may decrease the single‐stranded (ss) DNA‐binding activity of ZD domain and also change the protein structure of TopA, which subsequently modulate topoisomerase activity.  相似文献   

12.
Previous studies have presented indirect evidence that the transposase of the maize transposable element Activator (TPase) is active as an oligomer and forms inactive macromolecular complexes expressed in large amounts. Here, we have identified and characterized a dimerization domain at the C terminus of the protein. This domain is the most highly conserved region in the transposases of elements belonging to the Activator superfamily (hAT element superfamily) and contains a characteristic signature motif. The isolated dimerization domain forms extremely stable dimers in vitro. Interestingly, mutations in five of the six conserved residues of the signature motif do not affect in vitro dimerization, whereas mutations in other, less strictly conserved residues of the signature motif do. Loss of dimerization in vitro correlates with loss of TPase activity in vivo. As revealed by in situ immunofluorescence staining of mutant TPase proteins, the dimerization domain also is involved in forming inactive macromolecular aggregates when overexpressed, and the TPase contains one or more additional interaction functions.  相似文献   

13.
Pax proteins play a diverse role in early animal development and contain the characteristic paired domain, consisting of two conserved helix-turn-helix motifs. In many Pax proteins the paired domain is fused to a second DNA binding domain of the paired-like homeobox family. By amino acid sequence alignments, secondary structure prediction, 3D-structure comparison, and phylogenetic reconstruction, we analyzed the relationship between Pax proteins and members of the Tc1 family of transposases, which possibly share a common ancestor with Pax proteins. We suggest that the DNA binding domain of an ancestral transposase (proto-Pax transposase) was fused to a homeodomain shortly after the emergence of metazoans about one billion years ago. Using the transposase sequences as an outgroup we reexamined the early evolution of the Pax proteins. Our novel evolutionary scenario features a single homeobox capturing event and an early duplication of Pax genes before the divergence of porifera, indicating a more diverse role of Pax proteins in primitive animals than previously expected. Received: 16 February 2000 / Accepted: 13 August 2000  相似文献   

14.
Mariner-like elements are widespread eukaryotic transposons, but Mos-1 is the only natural element that is known to be active. Little is known about the biochemistry of mariner transposition. The first step in the process is the binding of the transposase to the 5' and 3' inverted terminal repeats (ITRs) of the element. Using the 3' ITR of the element, we have determined the binding properties of a recombinant Mos-1 transposase produced in bacteria, and we have used deletion derivatives to localize the minimal ITR binding domain between amino acids 1 and 141. Its features and structure indicate that it differs from the ITR binding domain of the transposase encoded by Tc1-related elements.  相似文献   

15.
An insertion sequence unique to Frankia strain ArI5   总被引:1,自引:1,他引:0  
John  Theodore R.  Wiggington  James  Bock  Joyce V.  Klemt  Ryan  Johnson  Jerry D. 《Plant and Soil》2003,254(1):107-113
At the genetic level, understanding of symbiotic nitrogen fixation by Frankia is limited to nif functions that are highly conserved among all organisms. The genetics and biochemistry of nodulation are largely unexplored because of a complete lack of genetic tools. In other bacteria, mobile genetic elements such as insertion sequences (IS) and transposons are commonly used to create mutations and insert new genetic material. We have characterized a 4 kbp segment of DNA from Frankia strain ArI5 that has the hallmarks of a mobile genetic element, inverted repeats flanking a gene encoding a transposase. There are at least six copies of this element in strain ArI5 but none in either strain CcI3 or CpI1. The inverted repeats are 17 nt long and separated by 2156 bp. Within that region are two, overlapping ORFs that each encode a transposase. RT-PCR analysis of RNA from Frankia ArI5 cells conclusively demonstrates the expression of one transposase gene and suggests that both may be transcribed. Numerous attempts to clone the intact IS in E. coli were unsuccessful suggesting that the element may be unstable in this context. A clone containing the complete IS was constructed in E. coli then modified by insertion of the kanamycin (KAN) resistance gene from Tn5. A fragment of DNA including the inverted repeats, transposase genes and KAN gene, was transferred to the suicide vector pJBSD1. The construct, pFRISK, was transformed into E. coli to search for transposition events.  相似文献   

16.
ClpXP, an AAA+ protease, plays key roles in protein‐quality control and many regulatory processes in bacteria. The N‐terminal domain of the ClpX component of ClpXP is involved in recognition of many protein substrates, either directly or by binding the SspB adaptor protein, which delivers specific classes of substrates for degradation. Despite very limited sequence homology between the E. coli and C. crescentus SspB orthologs, each of these adaptors can deliver substrates to the ClpXP enzyme from the other bacterial species. We show that the ClpX N domain recognizes different sequence determinants in the ClpX‐binding (XB) peptides of C. crescentus SspBα and E. coli SspB. The C. crescentus XB determinants span 10 residues and involve interactions with multiple side chains, whereas the E. coli XB determinants span half as many residues with only a few important side chain contacts. These results demonstrate that the N domain of ClpX functions as a highly versatile platform for peptide recognition, allowing the emergence during evolution of alternative adaptor‐binding specificities. Our results also reveal highly conserved residues in the XB peptides of both E. coli SspB and C. crescentus SspBα that play no detectable role in ClpX‐binding or substrate delivery.  相似文献   

17.
We provide evidence that a prokaryotic insertion sequence (IS) element is active in a vertebrate system. The transposase of Escherichia coli element IS30 catalyzes both excision and integration in extrachromosomal DNA in zebrafish embryos. The transposase has a pronounced target preference, which is shown to be modified by fusing the enzyme to unrelated DNA binding proteins. Joining the transposase to the cI repressor of phage λ causes transposition primarily into the vicinity of the λ operator in E. coli, and linking to the DNA binding domain of Gli1 also directs the recombination activity of transposase near to the Gli1 binding site in zebrafish. Our results demonstrate the possibility of fusion transposases to acquire novel target specificity in both prokaryotes and eukaryotes.  相似文献   

18.
The mariner Mos1 synaptic complex consists of a tetramer of transposase molecules that bring together the two ends of the element. Such an assembly requires at least two kinds of protein-protein interfaces. The first is involved in "cis" dimerization, and consists of transposase molecules bound side-by-side on a single DNA molecule. The second, which is involved in "trans" dimerization, consists of transposase molecules bound to two different DNA molecules. Here, we used biochemical and genetic methods to enhance the definition of the regions involved in cis and trans-dimerization in the mariner Mos1 transposase. The cis and trans-dimerization interfaces were both found within the first 143 amino acid residues of the protein. The cis-dimerization activity was mainly contained in amino acids 1-20. The region spanning from amino acid residues 116-143, and containing the WVPHEL motif, was involved in the cis- to trans-shift as well as in trans-dimerization stabilization. Although the transposase exists mainly as a monomer in solution, we provide evidence that the transposase cis-dimer is the active species in inverted terminal repeat (ITR) binding. We also observed that the catalytic domain of the mariner Mos1 transposase modulates efficient transposase-transposase interactions in the absence of the transposon ends.  相似文献   

19.
The En/Spm-encoded TNPA protein binds to 12-bp DNA sequence motifs that are present in the sub-termini of the transposable element. DNA binding of TNPA to monomeric and dimeric forms of the binding motif was analyzed by gel retardation and cross-linking studies. A DNA binding domain at the N-terminal and a dimerization domain at the C-terminal portion of TNPA were localized using deletion derivatives of TNPA. These domains are novel since no apparent homology has been found in the data bases. The stoichiometry of the TNPA-DNA complexes was analyzed. A special complex is formed with a tail-to-tail dimeric DNA binding motif, most probably involving two DNA-bound TNPA molecules that interact via their dimerization domains. In redox reactions the requirement for one or two disulfide bonds for DNA binding of TNPA was shown. The implications of these findings for the excision mechanism of En/Spm are discussed.  相似文献   

20.
The Uup protein belongs to a subfamily of soluble ATP-binding cassette (ABC) ATPases that have been implicated in several processes different from transmembrane transport of molecules, such as transposon precise excision. We have demonstrated previously that Escherichia coli Uup is able to bind DNA. DNA binding capacity is lowered in a truncated Uup protein lacking its C-terminal domain (CTD), suggesting a contribution of CTD to DNA binding. In the present study, we characterize the role of CTD in the function of Uup, on its overall stability and in DNA binding. To this end, we expressed and purified isolated CTD and we investigated the structural and functional role of this domain. The results underline that CTD is essential for the function of Uup, is stable and able to fold up autonomously. We compared the DNA binding activities of three versions of the protein (Uup, UupΔCTD and CTD) by an electrophoretic mobility shift assay. CTD is able to bind DNA although less efficiently than intact Uup and UupΔCTD. These observations suggest that CTD is an essential domain that contributes directly to the DNA binding ability of Uup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号