首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Expression and purification of aggregation‐prone and disulfide‐containing proteins in Escherichia coli remains as a major hurdle for structural and functional analyses of high‐value target proteins. Here, we present a novel gene‐fusion strategy that greatly simplifies purification and refolding procedure at very low cost using a unique hyperacidic module derived from the human amyloid precursor protein. Fusion with this polypeptide (dubbed FATT for Flag‐Acidic‐Target Tag) results in near‐complete soluble expression of variety of extracellular proteins, which can be directly refolded in the crude bacterial lysate and purified in one‐step by anion exchange chromatography. Application of this system enabled preparation of functionally active extracellular enzymes and antibody fragments without the need for condition optimization.  相似文献   

2.
Production of correctly folded and biologically active proteins in Escherichia coli can be a challenging process. Frequently, proteins are recovered as insoluble inclusion bodies and need to be denatured and refolded into the correct structure. To address this, a refolding screening process based on a 96-well assay format supported by design of experiments (DOE) was developed for identification of optimal refolding conditions. After a first generic screen of 96 different refolding conditions the parameters that produced the best yield were further explored in a focused DOE-based screen. The refolding efficiency and the quality of the refolded protein were analyzed by RP-HPLC and SDS–PAGE. The results were analyzed by the DOE software to identify the optimal concentrations of the critical additives. The optimal refolding conditions suggested by DOE were verified in medium-scale refolding tests, which confirmed the reliability of the predictions. Finally, the refolded protein was purified and its biological activity was tested in vitro. The screen was applied for the refolding of Interleukin 17F (IL-17F), stromal-cell-derived factor-1 (SDF-1α/CXCL12), B cell-attracting chemokine 1 (BCA-1/CXCL13), granulocyte macrophage colony stimulating factor (GM-CSF) and the complement factor C5a. This procedure identified refolding conditions for all the tested proteins. For the proteins where refolding conditions were already available, the optimized conditions identified in the screening process increased the yields between 50% and 100%. Thus, the method described herein is a useful tool to determine the feasibility of refolding and to identify high-yield scalable refolding conditions optimized for each individual protein.  相似文献   

3.
Regarding our previous report on refolding of alkaline phosphatase [Yazdanparast and Khodagholi, 2005 Arch. Biochem. Biophys] it was found that in spite of the anti-aggregatory effect of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitteronic detergent, the recovered activity was almost the same as the recovered activity obtained through the unassisted approach. The low recovery yield is probably due to the bulky groups of the detergent that interfere with its entrance into the small cavity of the stripping agent, cyclodextrin, implying that the stripping of detergent molecules from the detergent–protein complexes plays a major role in successful refolding processes. To improve the efficiency of CHAPS stripping, we evaluated, for the first time, the stripping potential of a molecular imprinting polymer designed to replace β-CD. In this approach, CHAPS was used as the template and the refolding of GuHCl denatured alkaline phosphatase was studied. Our results indicated that under the optimally developed refolding environment and similar to stripping by soluble β-CD, a refolding yield of 79% was obtained for denatured alkaline phosphatase using 20 mg/ml of the molecularly imprinted poly (β-CD) polymer. The major advantage of the new stripping agent, besides of its recycling option and ease of separation from the finished product, is its high potential of preventing aggregate formation. Based on these results, it seems that the new stripping strategy can constitute an ideal approach for refolding of proteins at much lower industrial costs compared to stripping with soluble β-cyclodextrin.  相似文献   

4.
Xylanases are important polysaccharide‐cleaving catalysts for the pulp and paper, animal feeds and biofuels industries. They have also proved to be valuable model systems for understanding enzymatic catalysis, with one of the best studied being the GH11 xylanase from Bacillus circulans (Bcx). However, proteins from this class are very recalcitrant to refolding in vitro. This both limits their high level expression in heterologous hosts, and prevents experimental approaches, such as peptide ligation or chemical modifications, to probe and engineer their stability and function. To solve this problem, a systematic screening approach was employed to identify suitable buffer conditions for renaturing Bcx in vitro. The fractional factorial screen employed identified starting conditions for refolding, which were then refined and developed into a generic protocol for renaturing preparative amounts of active Bcx in a 50–60% yield from inclusion bodies. The method is robust and proved equally proficient at refolding circularly permuted versions that carry cysteine mutations. This general approach should be applicable to related GH11 xylanases, as well as proteins adopting a similar β‐jellyroll fold, that are otherwise recalcitrant to refolding in vitro.  相似文献   

5.
Optimized conditions are needed to refold recombinant proteins from bacterial inclusion bodies into their biologically active conformations. In this study, we found two crucial requirements for efficient refolding of cationic tetrameric chicken avidin. The first step is to eliminate nucleic acid contaminants from the bacterial inclusion body. The electrostatic interactions between the remaining nucleic acids and proteins strongly enhanced protein aggregation during the refolding process. The cysteine specific reversible S-cationization procedure was successfully employed for large-scale preparation of nucleic acid free denatured protein without purification tag system. The second step is the intramolecular disulfide formation prior to refolding in dialysis removing denaturant. Disulfide intact monomeric avidin showed efficient formation of biologically active tetrameric conformation during the refolding process. Using this optimized refolding procedure, highly cationic avidin derivative designed as an intracellular delivery carrier of biotinylated protein was successfully prepared.  相似文献   

6.
Intein-mediated protein ligation is a recently developed method that enables the C-terminal labeling of proteins. This technique requires a correctly folded intein mutant that is fused to the C-terminus of a target protein to create a thioester, which allows the ligation of a peptide with an N-terminal cysteine (1, 2). Here we describe the establishment of this method for the labeling, under denaturing conditions, of target proteins that are expressed insolubly as intein fusion proteins. A GFPuv fusion protein with the Mycobacterium xenopi gyrA intein was expressed in inclusion bodies in Escherichia coli and initially used as a model protein to verify intein cleavage activity under different refolding conditions. The intein showed activity after refolding in nondenaturing and slightly denaturing conditions. A construct of the same intein with an anti-neutravidin single-chain antibody was also expressed in an insoluble form. The intein-mediated ligation was established for this single chain antibody-intein fusion protein under denaturing conditions in 4 M urea to prevent significant precipitation of the fusion protein during the first refolding step. Under optimized conditions, the single-chain antibody was labeled with a fluorescent peptide and used for antigen screening on a biochip after final refolding. This screening procedure allowed the determination of binding characteristics of the scFv for avidin proteins in a miniaturized format.  相似文献   

7.
Optimization of experimental problems is a challenging task in both engineering and science. In principle, two different design of experiments (DOE) strategies exist: statistical and stochastic methods. Both aim to efficiently and precisely identify optimal solutions inside the problem‐specific search space. Here, we evaluate and compare both strategies on the same experimental problem, the optimization of the refolding conditions of the lipase from Thermomyces lanuginosus with 26 variables under study. Protein refolding is one of the main bottlenecks in the process development for recombinant proteins. Despite intensive effort, the prediction of refolding from sequence information alone is still not applicable today. Instead, suitable refolding conditions are typically derived empirically in large screening experiments. Thus, protein refolding should constitute a good performance test for DOE strategies. We compared an iterative stochastic optimization applying a genetic algorithm and a standard statistical design consisting of a D‐optimal screening step followed by an optimization via response surface methodology. Our results revealed that only the stochastic optimization was able to identify optimal refolding conditions (~1.400 U g?1 refolded activity), which were 3.4‐fold higher than the standard. Additionally, the stochastic optimization proved quite robust, as three independent optimizations performed similar. In contrast, the statistical DOE resulted in a suboptimal solution and failed to identify comparable activities. Interactions between process variables proved to be pivotal for this optimization. Hence, the linear screening model was not able to identify the most important process variables correctly. Thereby, this study highlighted the limits of the classic two‐step statistical DOE. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

8.
The expression of human genes in bacteria is often one of the most efficient systems for generating proteins for drug discovery efforts. However, expression of mammalian cDNAs in Escherichia coli often results in the production of protein that is insoluble and misfolded and thus requires the development of a successful refolding procedure to generate active protein. To accelerate the process of developing protein refolding protocols, we have developed a semi-automated screening and assay system that utilizes an incomplete factorial approach to sample a large "space" of refolding conditions based on parameters known to influence protein stability and solubility. Testing of these conditions is performed readily in a 96-well plate format with minimal sample manipulation. The folded protein is resolved and detected using an HPLC equipped with a mini-column and a highly sensitive fluorescence detector. This simple method requires only a small amount of protein for the entire screen (<1 mg), and most importantly, a functional assay is not required to assess the refolding yields. Here, we validate the utility of this screening system using two model proteins, IL13 and MMP13, and demonstrate its successful application to the refolding of our target protein, the ligand-binding domain of rat liver X receptor beta.  相似文献   

9.
Steps for the refolding of proteins from solubilized inclusion bodies or misfolded product often represent bottlenecks in process development, where optimal conditions are typically derived empirically. To expedite refolding optimization, microwell screening may be used to test multiple conditions in parallel. Fast, accurate, and reproducible assays are required for such screening processes, and the results derived must be representative of the process at full scale. This article demonstrates the use of these microscale techniques to evaluate the effects of a number of additives on the refolding of IGF‐1 from denatured inclusion bodies, using an established HPLC assay for this protein. Prior to this, microwell refolding was calibrated for scale‐up using hen egg‐white lysozyme (HEWL) as an initial model protein, allowing us to implement and compare several assays for protein refolding, including turbidity, enzyme activity, and chromatographic methods, and assess their use for microwell‐based experimentation. The impact of various microplate types upon protein binding and loss is also assessed. Solution mixing is a key factor in protein refolding, therefore we have characterized the effects of different methods of mixing in microwells in terms of their impact on protein refolding. Our results confirm the applicability and scalability of microwell screening for the development of protein refolding processes, and its potential for application to new inclusion body‐derived protein products. Biotechnol. Bioeng. 2009;103: 329–340. © 2008 Wiley Periodicals, Inc.  相似文献   

10.
Regarding our previous report on refolding of alkaline phosphatase [Yazdanparast and Khodagholi, 2005 Arch. Biochem. Biophys] it was found that in spite of the anti-aggregatory effect of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitteronic detergent, the recovered activity was almost the same as the recovered activity obtained through the unassisted approach. The low recovery yield is probably due to the bulky groups of the detergent that interfere with its entrance into the small cavity of the stripping agent, cyclodextrin, implying that the stripping of detergent molecules from the detergent-protein complexes plays a major role in successful refolding processes. To improve the efficiency of CHAPS stripping, we evaluated, for the first time, the stripping potential of a molecular imprinting polymer designed to replace beta-CD. In this approach, CHAPS was used as the template and the refolding of GuHCl denatured alkaline phosphatase was studied. Our results indicated that under the optimally developed refolding environment and similar to stripping by soluble beta-CD, a refolding yield of 79% was obtained for denatured alkaline phosphatase using 20 mg/ml of the molecularly imprinted poly (beta-CD) polymer. The major advantage of the new stripping agent, besides of its recycling option and ease of separation from the finished product, is its high potential of preventing aggregate formation. Based on these results, it seems that the new stripping strategy can constitute an ideal approach for refolding of proteins at much lower industrial costs compared to stripping with soluble beta-cyclodextrin.  相似文献   

11.
Overexpression of recombinant Fc fusion proteins in Escherichia coli frequently results in the production of inclusion bodies that are subsequently used to produce fully functional protein by an in vitro refolding process. During the refolding step, misfolded proteins such as disulfide scrambled forms can be formed, and purification steps are used to remove these product-related impurities to produce highly purified therapeutic proteins. A variety of analytical methods are commonly used to monitor protein variants throughout the purification process. Capillary electrophoresis (CE)-based techniques are gaining popularity for such applications. In this work, we used a nonreduced capillary electrophoresis–sodium dodecyl sulfate (nrCE–SDS) method for the analysis of disulfide scrambled forms in a fusion protein. Under denatured nonreduced conditions, an extra post-shoulder peak was observed at all purification steps. Detailed characterization revealed that the peak was related to the disulfide scrambled forms and was isobaric with the correctly folded product. In addition, when sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) was used during the CE–SDS peak characterization, we observed that the migration order of scrambled forms is reversed on CE–SDS versus SDS–PAGE. This illustrates the importance of establishing proper correlation of these two techniques when they are used interchangeably to guide the purification process and to characterize proteins.  相似文献   

12.
Protein kinases are key drug targets involved in the regulation of a wide variety of cellular processes. To aid the development of drugs targeting these kinases, it is necessary to express recombinant protein in large amounts. The expression of these kinases in Escherichia coli often leads to the accumulation of the expressed protein as insoluble inclusion bodies. The refolding of these inclusion bodies could provide a route to soluble protein, but there is little reported success in this area. We set out to develop a system for the screening of refolding conditions for a model protein kinase, p38α, and applied this system to denatured p38α derived from natively folded and inclusion body protein. Clear differences were observed in the refolding yields obtained, suggesting differences in the folded state of these preparations. Using the screening system, we have established conditions under which soluble, folded p38α can be produced from inclusion bodies. We have shown that the refolding yields obtained in this screen are suitable for the economic large-scale production of refolded p38α protein kinase.  相似文献   

13.
We previously reported the set up of an automated test for screening the refolding of recombinant proteins expressed as inclusion bodies in Escherichia coli[1]. The screen used 96 refolding buffers and was validated with 24 proteins, 70% of which remained soluble in at least one buffer. In the present paper, we have analyzed in more detail these experimental data to see if the refolding process can be driven by general rules. Notably, we found that proteins with an acidic isoelectric point (pI) refolded in buffers the average pH of which was alkaline and conversely. In addition, the number of refolding buffers wherein a protein remained soluble increased with the difference between its pI and the average pH of the buffers in which it refolded. A trend analysis of the other variables (ionic strength, detergents, etc.) was also performed. On the basis of this analysis, we devised and validated a new refolding screen made of a single buffer for acidic proteins and a single buffer for alkaline proteins.  相似文献   

14.
Proteins that are modified by chemical conjugation require at least two separate purification processes. First the bulk protein is purified, and then after chemical conjugation, a second purification process is required to obtain the modified protein. In an effort to develop new enabling technologies to integrate bioprocessing and protein modification, we describe the use of disulfide‐bridging conjugation to conduct PEGylation during protein refolding. Preliminary experiments using a PEG‐mono‐sulfone reagent with partially unfolded leptin and unfolded RNAse T1 indicated that the cysteine thiols underwent disulfide‐bridging conjugation to give the PEGylated proteins. Interferon‐β1b (IFN‐β1b) was then expressed in E.coli as inclusion bodies and found to undergo disulfide bridging‐conjugation during refolding. The PEG‐IFN‐β1b was isolated by ion‐exchange chromatography and displayed in vitro biological activity. In the absence of the PEGylation reagent, IFN‐β1b refolding was less efficient and yielded protein aggregates. No PEGylation was observed if the cysteines on IFN‐β1b were first modified with iodoacetamide prior to refolding. Our results demonstrate that the simultaneous refolding and disulfide bridging PEGylation of proteins could be a useful strategy in the development of affordable modified protein therapeutics.  相似文献   

15.
Cultivated and wild potato species synthesize a wide variety of steroidal glycoalkaloids (GA) that may affect either human health or biotic stress resistance. Therefore, GA composition must be a major criterion in the evaluation of breeding products when species genomes are merged and/or manipulated. This work reports the results of GA analysis performed on unique haploid (2n=2x=24) plants obtained from tetraploid (2n=4x=48) Solanum bulbocastanumS. tuberosum hybrids through in vitro anther culture. Glycoalkaloids were extracted from tubers and analyzed by HPLC. Haploids generally showed the occurrence of parental GA. However, in several cases loss of parental GA and gain of new GA lacking in the parents was observed. It may be hypothesized that new GA profiles of our haploids is the result of either genetic recombination or combinatorial biochemistry events. To highlight differences between haploids and parents, soluble proteins and antioxidant activities were also determined. Both were always higher in haploids compared to their parents. The nature of the newly formed GAs will be further investigated, because they may represent new metabolites that can be used against pest and diseases, or are useful for human health.  相似文献   

16.
α-Crystallin is known to act as a molecular chaperone by preventing the aggregation of partially unfolded substrate proteins. It is also known to assist the refolding of a number of denatured enzymes, but the activity yield is often less than 20%. In this paper, we have tried to tune the refolding ability of α-crystallin in vitro by optimizing various external parameters. We wanted to find out the best possible condition under which it can exhibit maximum refolding capacity. We found that under suitable condition in vitro α-crystallin can refold denatured malate dehydrogenase, carbonic anhydrase and lactate dehydrogenase to recover more than 40% activity. We also measured the effect of several external factors such as nucleotides, osmolytes, electrolytes, temperature etc. on the in vitro α-crystallin mediated reactivation of above stated enzymes. We found that nucleotides and electrolytes had little effect on the refolding ability of α-crystallin. However, in presence of different osmolytes, we found that its ability to reactivate denatured substrate proteins enhanced significantly. Refolding in presence of pre-incubated α-crystallin reveals that hydrophobicity had stronger influence on the refolding capacity of α-crystallin than its oligomeric size.  相似文献   

17.
Inclusion body refolding processes play a major role in the production of recombinant proteins. Improvement of the size-exclusion chromatography refolding process was achieved by combining a decreasing urea gradient with an increasing arginine gradient (two gradients) for the refolding of NTA protein (a new thrombolytic agent) in this paper. Different refolding methods and different operating conditions in two gradients gel filtration process were investigated with regard to increasing the NTA protein activity recovery and inhibition of aggregation. The refolding of denatured NTA protein showed this method could significantly increase the activity recovery of protein at high protein concentration. The activity recovery of 37% was obtained from the initial NTA protein concentration up to 20 mg/ml. The conclusions presented in this study could also be applied to the refolding of lysozyme.  相似文献   

18.
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding‐related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large β‐helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all‐β‐sheet protein allows detailed analysis of the formation of β‐sheet structure in larger proteins. Using a combination of fluorescence and far‐UV circular dichroism spectroscopy, we show that the pertactin β‐helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and β‐sheet‐rich topology, pertactin refolding is reversible and not complicated by off‐pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate‐limiting step. Furthermore, site‐specific labeling experiments indicate that the β‐helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, β‐sheet‐rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, β‐sheet‐rich refolding intermediates. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Eukaryotic proteins expressed inEscherichia coli often accumulate within the cell as insoluble protein aggregates or inclusion bodies. The recovery of structure and activity from inclusion bodies is a complex process, there are no general rules for efficient renaturation. Research into understanding how proteins fold in vivo is giving rise to potentially new refolding methods, for example, using molecular chaperones. In this article we review what is understood about the main three classes of chaperone: the Stress 60, Stress 70, and Stress 90 proteins. We also give an overview of current process strategies for renaturing inclusion bodies, and report the use of novel developments that have enhanced refolding yields.  相似文献   

20.
During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat‐shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins. Here, we compared the capacity of all Drosophila melanogaster small HSP family members for their ability to assist in refolding stress‐denatured substrates and/or to prevent aggregation of disease‐associated misfolded proteins. We identified CG14207 as a novel and potent small HSP member that exclusively assisted in HSP70‐dependent refolding of stress‐denatured proteins. Furthermore, we report that HSP67BC, which has no role in protein refolding, was the most effective small HSP preventing toxic protein aggregation in an HSP70‐independent manner. Importantly, overexpression of both CG14207 and HSP67BC in Drosophila leads to a mild increase in lifespan, demonstrating that increased levels of functionally diverse small HSPs can promote longevity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号