首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Biological dinitrogen fixation in mangrove communities of the Tampa Bay region of South Florida was investigated using the acetylene reduction technique. Low rates of acetylene reduction (0.01 to 1.84 nmol of C(2)H(4)/g [wet weight] per h) were associated with plant-free sediments, while plant-associated sediments gave rise to slightly higher rates. Activity in sediments increased greatly upon the addition of various carbon sources, indicating an energy limitation for nitrogenase (C(2)H(2)) activity. In situ determinations of dinitrogen fixation in sediments also indicated low rates and exhibited a similar response to glucose amendment. Litter from the green macroalga, Ulva spp., mangrove leaves, and sea grass also gave rise to significant rates of acetylene reduction.Higher rates of nitrogenase activity (15 to 53 nmol of C(2)H(4)/g [wet weight] per h were associated with washed excised roots of three Florida mangrove species [Rhizophora mangle L., Avicennia germinans (L) Stern, and Laguncularia racemosa Gaertn.] as well as with isolated root systems of intact plants (11 to 58 mug of N/g [dry weight] per h). Following a short lag period, root-associated activity was linear and did not exhibit a marked response to glucose amendment. It appears that dinitrogen-fixing bacteria in the mangrove rhizoplane are able to use root exudates and/or sloughed cell debris as energy sources for dinitrogen fixation.  相似文献   

2.
Summary Heterotrophic dinitrogen fixation in root associations of successional stages of the tropical mangrove plant community at the Ganges river estuary in India was investigated by excised-root acetylene reduction assay, and enumeration and identification of diazotrophic bacteria from sediment, root and tidal water samples. High to very high rates of nitrogenase activity (64–130 nmol C2H4/g dry root/h) were associated with washed excised roots of seven common early-successional mangrove species at the inundated swamps. Declining, late-successional mangroves at the occasionally inundated ridges had considerably lower values and the “declined” mangroves and other non-littoral species at embankment protected highlands had very low to insignificant values of root nitrogenase activity. Total and inorganic nitrogen contents of the mangrove sediments were low and were positively related to the stages of physiographic succession. Plant-associated sediments of particularly the old formation swamps had very high C/N ratios. Nine isolates of nitrogen-fixing bacteria belonging to all known O2 response groups were distinguished from a large population of diazotrophs associated with roots of mangroves and other associate plant species of the community. The isolates differed with respect to their N2-fixation efficiency and halotolerance in pure culture. There was no specificity of any of the bacterial isolates to any of the plant species of the community but a higher number of efficient isolates were seen to be associated with mangroves at the swampy succession. Sediment-free tidal water also contained a large population of microaerophilic and anaerobic N2-fixing bacteria.  相似文献   

3.
Nitrogenase activity in mangrove forests at two locations in the North Island, New Zealand, was measured by acetylene reduction and 15N2 uptake. Nitrogenase activity (C2H2 reduction) in surface sediments 0 to 10 mm deep was highly correlated (r = 0.91, n = 17) with the dry weight of decomposing particulate organic matter in the sediment and was independent of light. The activity was not correlated with the dry weight of roots in the top 10 mm of sediment (r = −0.01, n = 13). Seasonal and sample variation in acetylene reduction rates ranged from 0.4 to 50.0 μmol of C2H4 m−2 h−1 under air, and acetylene reduction was depressed in anaerobic atmospheres. Nitrogen fixation rates of decomposing leaves from the surface measured by 15N2 uptake ranged from 5.1 to 7.8 nmol of N2 g (dry weight)−1 h−1, and the mean molar ratio of acetylene reduced to nitrogen fixed was 4.5:1. Anaerobic conditions depressed the nitrogenase activity in decomposing leaves, which was independent of light. Nitrogenase activity was also found to be associated with pneumatophores. This activity was light dependent and was probably attributable to one or more species of Calothrix present as an epiphyte. Rates of activity were generally between 100 and 500 nmol of C2H4 pneumatophore−1 h−1 in summer, but values up to 1,500 nmol of C2H4 pneumatophore−1 h−1 were obtained.  相似文献   

4.
Microcoleus chthonoplastes dominated microbial mats are conspicuous along the shallow littoral zone in Lake Chiprana, a hypersaline lake located in the Ebro river basin in north-eastern Spain. Pigment data show that these mats included diatom species and anoxygenic phototrophs, Chloroflexus-type bacteria and purple bacteria. In situ, these mats showed low rates of dinitrogen fixation (acetylene reduction). Acetylene reduction was stimulated about 30-fold in excised mats after moderate phosphate fertilisation during 2 weeks incubation in a mesocosm. Pigment analyses showed that this treatment had little impact on the phototrophic community structure, except that it induced a decrease of Chloroflexus-type bacteria. The use of metabolic inhibitors indicated that methanogenic archaea and aerobic heterotrophic bacteria were the major dinitrogen fixers in this system. This is in agreement with the fact that the mat-building cyanobacterium M. chthonoplastes lacks the dinitrogenase reductase nifH gene and with the fact that acetylene reduction rates were strongly stimulated by additions of H2/CO2, methanol, fructose and sucrose, but not by lactate, acetate, formate and glucose. No significant differences where found for acetylene reduction rates when comparing light and dark incubations of these microbial mats. However, acetylene reduction rates were enhanced in the light when the near infrared (NIR) light was filtered out, which arrested anoxygenic photosynthesis. We suggest, therefore, that the chemoheterotrophic dinitrogen fixing bacteria were in competition with anoxygenic phototrophic bacteria for organic substrates, while the latter did not contribute to dinitrogen fixation in the mat.  相似文献   

5.
The aquatic filamentous cyanobacteria Anabaena oscillarioides and Trichodesmium sp. reveal specific cellular regions of tetrazolium salt reduction. The effects of localized reduction of five tetrazolium salts on N2 fixation (acetylene reduction), 14CO2 fixation, and 3H2 utilization were examined. During short-term (within 30 min) exposures in A. oscillarioides, salt reduction in heterocysts occurred simultaneously with inhibition of acetylene reduction. Conversely, when salts failed to either penetrate or be reduced in heterocysts, no inhibition of acetylene reduction occurred. When salts were rapidly reduced in vegetative cells, 14CO2 fixation and 3H2 utilization rates decreased, whereas salts exclusively reduced in heterocysts were not linked to blockage of these processes. In the nonheterocystous genus Trichodesmium, the deposition of reduced 2,3,5-triphenyl-2-tetrazolium chloride (TTC) in the internal cores of trichomes occurs simultaneously with a lowering of acetylene reduction rates. Since TTC deposition in heterocysts of A. oscillarioides occurs contemporaneously with inhibition of acetylene reduction, we conclude that the cellular reduction of this salt is of use in locating potential N2-fixing sites in cyanobacteria. The possible applications and problems associated with interpreting localized reduction of tetrazolium salts in cyanobacteria are presented.  相似文献   

6.
Nitrogen fixation (diazotrophy) has recently been demonstrated in several methanogenic archaebacteria. To compare the process in an archaebacterium with that in eubacteria, we examined the properties of diazotrophic growth and nitrogenase activity in Methanosarcina barkeri 227. Growth yields with methanol or acetate as a growth substrate were significantly lower in N2-grown cultures than in NH4+-grown cultures, and the culture doubling times were increased, indicating that diazotrophy was energetically costly, as it is in eubacteria. Growth of nitrogen-fixing cells was inhibited when molybdenum was omitted from the medium; addition of 10 nM molybdate stimulated growth, while 1 μM molybdate restored maximum diazotrophic growth. Omission of molybdenum did not inhibit growth of ammonia-grown cells. Tungstate (100 μM) strongly inhibited growth of molybdenum-deficient diazotrophic cells, while ammonia-grown cells were unaffected. The addition of 100 nM vanadate or chromate did not stimulate diazotrophic growth of molybdenum-starved cells. These results are consistent with the presence of a molybdenum-containing nitrogenase in M. barkeri. Acetylene, the usual substrate for assaying nitrogenase activity, inhibited methanogenesis by M. barkeri and consequently needed to be used at a low partial pressure (0.3% of the headspace) when acetylene reduction by whole cells was assayed. Whole cells reduced 0.3% acetylene to ethylene at a very low rate (1 to 2 nmol h−1 mg of protein−1), and they “switched off” acetylene reduction in response to added ammonia or glutamine. Crude extracts from diazotrophic cells reduced 10% acetylene at a rate of 4 to 5 nmol of C2H4 formed h−1 mg of protein−1 when supplied with ATP and reducing power, while extracts of Klebsiella pneumoniae prepared by the same procedures had rates 100-fold higher. Acetylene reduction by extracts required ATP and was completely inhibited by 1 mM ADP in the presence of 5 mM ATP. The low rates of C2H2 reduction could be due to improper assay conditions, to switched-off enzyme, or to the nitrogenase's having lower activity towards acetylene than towards dinitrogen.  相似文献   

7.
A portable gas chromatograph was employed in the Vestfold Hills, Antarctica, during the austral summer of 1979-80 for determining nitrogenase activity of the blue-green alga Nostoc commune Vaucher by the acetylene reduction assay. Acetylene reduction was measured in samples taken along a transect where the vegetation changed with respect to differing topography and water availability. Submerged colonies of Nostoc recorded the highest fixation rates (6.89 nmol C2H4. cm-2 h-1). Damp mosscyanophyte associations growing on shallow slopes showed moderate rates of acetylene reduction (1.99 nmol C2H4. cm-2 h-1) whilst the drier vegetation of the steeper terrain was the least active (0.19 nmol C2H4. cm-2 h-1. The employment of a high sensitivity portable gas chromatograph provided an accurate and reliable method of measuring acetylene reduction.  相似文献   

8.
A perfusion method for assaying nitrogenase activity (acetylene reduction) in marine sediments was developed. The method was used to assay sediment cores from Spartina alterniflora (salt marsh), Zostera marina (sea grass), and Thalassia testudinum (sea grass) communities, and the results were compared with those of conventional sealed-flask assays. Rates of ethylene production increased progressively with time in the perfusion assays, reaching plateau values of 2 to 3 nmol · g of dry sediment−1 · h−1 by 10 to 20 h. Depletion of interstitial NH4+ was implicated in this stimulation of nitrogenase activity. Initial acetylene reduction rates determined by the perfusion assay of cores from the Spartina community ranged from 0.15 to 0.60 nmol of C2H4 · g of dry sediment−1 · h−1. These rates were similar to those for sediments assayed in sealed flasks without seawater when determined over linear periods of C2H4 production. Initial values obtained by using the perfusion method were 0.66 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Zostera communities and 0.70 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Thalassia communities. In all cases, rates determined by simultaneous slurry assays were lower than those determined by the perfusion method.  相似文献   

9.
Nitrogenase activity (acetylene reduction activity) was found to occur universally in the Cyperus papyrus swamp in Lake Naivasha. Low rates of acetylene reduction activity (0.9–104.9 nmol C2H4 g d.wt. roots-1 h-1) were associated with excised roots of C. papyrus but higher rates of activity (89.0–280.4 nmol C2H4 g d.wt. roots-1 h-1) were associated with intact root systems of the plant. It was estimated that nitrogen fixation associated with young roots alone could supply about 26% of the nitrogen requirements of growing papyrus plants. Acetylene reduction activity in the lake bottom sediments was generally low and associated with adjacent papyrus stands. Plate counts of putative aerobic and facultatively anaerobic N2-fixing bacteria associated with papyrus roots showed the presence of high numbers of diazotrophs (5.4 × 106 CFU g d.wt. roots-1). Fewer numbers of N2-fixing bacteria were detected in the sediments (1.9 × 103-3.2 × 104 CFU g d.wt. sediment-1).  相似文献   

10.
A mass spectrometer with a membrane-covered inlet was used to measure nitrogen fixation by following changes in the concentration of dissolved N2 in a stirred suspension of the cyanobacterium Anabaena variabilis in an open system. The results showed a good fit to Michaelis-Menten kinetics with a Km for N2 of 65 μM at 35°C, corresponding to 0.121 atmosphere of N2. Corresponding values for the Km for acetylene reduction were 385 μM (0.011 atmosphere at 35°C). Comparison of the values of Vmax for N2 uptake with those for the acetylene reduction assay under similar conditions gave an average value of 3.8 for the conversion factor between N2 and C2H2 reduction. Reduction of protons to hydrogen was completely inhibited at sufficiently high concentrations of C2H2, but even at saturating N2 concentrations, 1 mol of H2 was produced for every mole of N2 reduced. This explains the finding that the observed C2H2/N2 ratio is higher than the value of 3 expected from the requirement for two electrons for acetylene reduction and six for nitrogen reduction. The results correlate well with a mechanism for N2 reduction involving the equation: N2 + 8H+ + 8e → 2NH3 + H2 which gives a conversion factor between C2H2 and N2 of 4. It is proposed that, in general, 4 is a more appropriate value than 3 for the conversion factor.  相似文献   

11.
Hydroponic growth medium must be well buffered if it is to support sustained plant growth. Although 1.0 millimolar phosphate is commonly used as a buffer for hydroponic growth media, at that concentration it is generally toxic to a soybean plant that derives its nitrogen solely from dinitrogen fixation. On the other hand, we show that 1.0 to 2.0 millimolar 2-(N-morpholino)ethanesulfonic acid, pKa 6.1, has excellent buffering capacity, and it neither interferes with nor contributes nutritionally to soybean plant growth. Furthermore, it neither impedes nodulation nor the assay of dinitrogen fixation. Hence, soybean plants grown hydroponically on a medium supplemented with 1.0 to 2.0 millimolar 2-(N-morpholino)ethanesulfonic acid and 0.1 millimolar phosphate achieve an excellent rate of growth and, in the absence of added fixed nitrogen, attain a very high rate of dinitrogen fixation. Combining the concept of hydroponic growth and the sensitive acetylene reduction technique, we have devised a simple, rapid, reproducible assay procedure whereby the rate of dinitrogen fixation by individual plants can be measured throughout the lifetime of those plants. The rate of dinitrogen fixation as measured by the nondestructive acetylene reduction procedure is shown to be approximately equal to the rate of total plant nitrogen accumulation as measured by Kjeldahl analysis. Because of the simplicity of the procedure, one investigator can readily assay 50 plants individually per day.  相似文献   

12.
The CO2-exchange rate required to make full use of available N2-fixation capacity, measured as acetylene reduction, was determined in soybean and alfalfa. Carbohydrates of root systems were depleted during a 40-hour dark treatment; then plants were exposed to a 24-hour light period during which different CO2-exchange rates were maintained with various CO2 concentrations. In three- and four-week-old soybeans and four-week-old alfalfa plants, acetylene-reduction capacity was used fully with CO2-exchange rates as low as 10 milligrams CO2 per plant per hour. In six-week-old alfalfa plants, however, acetylene reduction rates increased linearly, and apparent N2-fixation capacity was not used fully when CO2-exchange rates were higher than 40 milligrams CO2 per plant per hour. Under the conditions established, the energy cost of N2 fixation, measured as Δ(respiration of roots + nodules)/Δacetylene reduction over dark-treatment values, was 0.453 milligrams CO2 per micromole C2H4 for all rates of acetylene reduction and for both ages of soybean and alfalfa plants. Thus, root-plus-nodule respiration was not promoted by higher rates of apparent photosynthesis after C2H2-reduction capacity became saturated, and all available capacity for apparent N2 fixation had the same energy requirement.  相似文献   

13.
The aerobic hydrogen-oxidizing bacterium Alcaligenes latus represented by three strains was found to be able to grow with dinitrogen as the sole nitrogen source: The doubling time of total (Kjeldahl) nitrogen during growth on glucose at 30°C under an atmosphere containing 2% (v/v) oxygen in dinitrogen amounted to 39 h, while that in the presence of ammonium was 3 h. Nitrogen fixation did apparently not occur under air. During diazotrophic growth the cells accumulated up to 75% (w/dry weight) poly--hydroxybutyric acid. The efficiency of nitrogen fixation varied between 10 and 15 mg N per g glucose utilized. The specific nitrogenase activity measured in the acetylene reduction assay amounted to 5–17 nmol C2H4 formed per min and mg protein.  相似文献   

14.
M. Potts 《Oecologia》1979,39(3):359-373
Summary High rates of nitrogen fixation (acetylene reduction) are associated with communities of heterocystous and non-heterocystous blue-green algae, which are widespread and abundant in the coastal mangrove forests of the Sinai Peninsula.Heterocystous forms, particularly representatives of the Rivulariaceae, grow in aerobic environments, where nitrogenase activity may be limited by the availability of nutrients such as Fe and PO4–P. Desiccated communities of Scytonema sp. reduce acetylene within ten minutes of wetting by tidal sea water. Communities dominated by the non-heterocystous Hydrocoleus sp., Hyella balani, Lyngbya aestuarii, Phormidium sp. and Schizothrix sp., occur in close contact with anaerobic sediments and reduce acetylene in the dark as well as in the light.Nitrogen fixation in all these communities is light dependant and may be supplemented by an alternative source of reductant in the dark. The indications are that nitrogen fixation by these communities of blue-green algae, makes a significant contribution to the overall nitrogen input of the mangrove ecosystem.  相似文献   

15.
Summary Daviesia mimosoides is a common understorey legume in Eucalyptus forests of the Brindabella Range in southeastern Australia, capable of fixing atmospheric nitrogen. Rates of N fixation were measured by the acetylene-reduction technique over a growing season in the field. Pot trials under controlled conditions were also carried out to elucidate effects of soil moisture, temperature, and light. Average rates in the field varied from about 1–5 μ mol C2H4/g/h (wet weight of nodule), but rates up to 14 μ mol C2H4/g/h were measured in optimum controlled conditions. Annual N-fixation rates approximate 4.5–7.0 kg/ha. In pot trials, rate of acetylene reduction decreased with soil moisture to about−10 MPa tension, with a marked depression at about−6 MPa, but within the normal field range of soil moisture there was little correlation of moisture with average acetylene reduction rate. Rates were similar in the temperature range of 20–30°C, but were depressed by either low or high temperature (<10 or >30°C). Diurnal fluctuations in acetylene reduction rates were not correlated with solar radiation, but rates were limited by high mid-day temperatures.  相似文献   

16.
The time course profiles of C2H2 reduction by intact Scirpus olneyi (bulrush), Oryza sativa (rice) and Spartina alterniflora (cordgrass) with roots in atmospheres of N2 and 30-day-old Glycine max (soybean) in air were all immediately linear. This is the first report of immediately linear rates of C2H2 reduction by grass roots removed from soil. The immediately linear profile of C2H2 reduction by soil-free grass roots was achieved by preventing contact between the roots and air. Roots of soybeans and S. olneyi receiving pretreatments of O2 above normal environmental levels for 15 min before assay exhibited a short delay in C2H2 reduction. These initially nonlinear rates of C2H2 reduction are attributable to transient O2 inhibition of nitrogenase. Initial nonlinear rates of C2H2 reduction were also observed with immature soybean plants and with intact plant assays of O. sativa and S. olneyi in which C2H2 was injected into cylinders surrounding the plant tops. These results indicate that, apart from O2 inhibition of nitrogenase, the diffusion of C2H2 and C2H4 between the nitrogen-fixing sites and the sampling ports may cause initial nonlinear rates of C2H2 reduction. We conclude that in situ plant-associated nitrogenase activity should result in immediate reduction of C2H2 and that linear rates are observed when the proper assay conditions are used. Our data suggest that nitrogen fixation is closely associated with the roots of S. olneyi, O. sativa, and S. alterniflora growing in salt marsh sediment.  相似文献   

17.
High rates of acetylene (C2H2) reduction (nitrogenase activity) were observed in woodroom effluent from a neutral sulfite semi-chemical mill under aerobic (up to 644 nmol of C2H4 produced per ml per h) and under anaerobic (up to 135 nmol of C2H4 produced per ml per h) conditions. Pasteurized effluent developed C2H2 reduction activity when incubated under anaerobic but not under aerobic conditions. Activities were increased by addition of 0.5 to 3.0% glucose or xylose. Enrichment and enumeration studies showed that N2-fixing Azotobacter and Klebsiella were abundant, and N2-fixing Bacillus was present. Of 129 isolates of Klebsiella from pulp mills, lakes, rivers, and drainage and sewage systems, 32% possessed nitrogen-fixing ability.  相似文献   

18.
Peas (Pisum sativum L.) were inoculated with strains of Rhizobium leguminosarum having different levels of uptake hydrogenase (Hup) activity and were grown in sterile Leonard jars under controlled conditions. Rates of H2 evolution and acetylene reduction were determined for intact nodulated roots at intervals after the onset of darkness or after removal of the shoots. Hup activity was estimated using treatment plants or equivalent plants from the growth chamber, by measuring the uptake of H2 or 3H2 in the presence of acetylene. In all cases, the rate of H2 evolution was a continuous function of the rate of acetylene reduction. In symbioses with no demonstrable Hup activity, H2 evolution increased in direct proportion to acetylene reduction and the slopes were similar with the Hup strains NA502 and 128C79. Hup activity was similar in strains 128C30 and 128C52 but significantly lower in strain 128C54. With these strains, the slopes of the H2 evolution versus acetylene reduction curves initially increased with acetylene reduction, but became constant and similar to those for the Hup strains at high rates of acetylene reduction. On these parallel portions of the curves, the decreases in H2 evolution by Hup+ strains were similar in magnitude to their H2-saturated rates of Hup activity. The curvilinear relationship between H2 evolution and acetylene reduction for a representative Hup+ strain (128C52) was the same, regardless of the experimental conditions used to vary the nitrogenase activity.  相似文献   

19.
Pigeon peas [Cajanus cajan (L.) Millsp.] were grown in soil columns containing 15N-enriched organic matter. Seasonal N2 fixation activity was determined by periodically assaying plants for reduction of C2H2. N2 fixation rose sharply from the first assay period at 51 days after planting to a peak of activity between floral initiation and fruit set. N2 fixation (acetylene reduction) activity dropped concomitantly with pod maturation but recovered after pod harvests. Analysis of 15N content of plant shoots revealed that approximately 91 to 94% of plant N was derived from N2 fixation. The effect of inoculation with hydrogenase-positive and hydrogenase-negative rhizobia was examined. Pigeon peas inoculated with strain P132 (hydrogenase-positive) yielded significantly more total shoot N than other inoculated or uninoculated treatments. However, two other hydrogenase-positive strains did not yield significantly more total shoot N than a hydrogenase-negative strain. The extent of nodulation by inoculum strains compared to indigenous rhizobia was determined by typing nodules according to intrinsic antibiotic resistance of the inoculum strains. The inoculum strains were detected in almost all typed nodules of inoculated plants.

Gas samples were taken from soil columns several times during the growth cycle of the plants. H2 was never detected, even in columns containing pigeon peas inoculated with hydrogenase-negative rhizobia. This was attributed to H2 consumption by soil bacteria. Estimation of N2 fixation by acetylene reduction activity was closest to the direct 15N method when ethylene concentrations in the gas headspace (between the column lid and soil surface) were extrapolated to include the soil pore space as opposed solely to measurement in the headspace. There was an 8-fold difference between the two acetylene reduction assay methods of estimation. Based on a planting density of 15,000 plants per hectare, the direct 15N fixation rates ranged from 67 (noninoculated) to 134 kilograms per hectare, while grain yields ranged from 540 to 825 kilograms per hectare. Grain yields were not increased with N fertilizer.

  相似文献   

20.
Free-living and lichenized cyanobacterial (cyanolichen) colonies occupy 12–29% of the surface area in the Sand Hills grasslands on the Arapaho Prairie in southwestern Nebraska. During brief periods of favorable conditions (i.e., moderate temperature and high moisture), these diazotrophs are capable of high rates of dinitrogen fixation. Maximum rates of acetylene reduction measured during 1981 and 1982 were 2,237 μg N m-2 hr-l. The duration of dinitrogen fixation activity is dependent upon moisture conditions; rates of acetylene reduction were shown to decline 90% in as little as three hr. Desiccated colonies resumed acetylene reduction activity within one hr and achieved equilibrium rates within four hr following rehydration. Associative, heterotrophic diazotrophs were isolated from the rhizospheres of several grass species. These bacteria exhibited a range of culturing characteristics which may reflect differing plant-bacterial interaction potentials important to the establishment and maintenance of the plant species. None of the field assays for heterotrophic dinitrogen fixation performed over the two-yr period indicated a capacity of this group to provide ecologically significant levels of N in this grassland. Our gross estimate of the annual contribution was 3.5 kg N ha-1 from cyanolichens and 0.8 kg N ha-1 from associative heterotrophs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号