首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介形类(Ostracoda)因其丰富的化石记录和广布的海陆现生代表类群,而被认为是进化生物学中研究生物多样性产生机制和演变历程的颇具潜力的重要模式生物。介形类在甲壳亚门中的谱系发生位置、起源及其内部各类群间的系统关系还存在诸多争议。基于其体制构造的形态学特征,介形类被归入甲壳亚门下的颚足纲(Maxillopoda),但来自18S rDNA序列数据分析却显示Maxillopoda不是单系群。基于化石记录和壳体形态特征,高肌虫(Bradoriida)长期以来被认为是介形类的一个祖先类群,但保存有软躯体的早寒武世化石的研究表明,Bradoriida不是介形类甚至可能也不属于甲壳类。不同的研究者所强调的壳体和肢体形态特征各异,导致介形类最大的现生类群速足目(Podocopida)的四个超科之间的关系也存在诸多推测。壳体和肢体特征在系统演化意义上的不兼容,需要分子生物学等证据的介入。分子、形态和化石证据的积累及各种信息整合是系统演化研究的必然趋势。  相似文献   

2.
Plant molecular systematic studies of closely related taxa have relied heavily on sequence data from nuclear ITS and cpDNA. Positive attributes of using ITS sequence data include the rapid rate of evolution compared to most plastid loci and availability of universal primers for amplification and sequencing. On the other hand, ITS sequence data may not adequately track organismal phylogeny if concerted evolution and high rDNA array copy number do not permit identification of orthologous copies. Shaw et al. (American Journal of Botany 92: 142-166) recently identified nine plastid regions that appear to provide more potentially informative characters than many other plastid loci. In the present study, sequences of these loci and ITS were obtained for six taxonomic groups in which phylogenetic relationships have been difficult to establish using other data. The relative utility of these regions was compared by assessing the number of parsimony informative characters, character congruence, resolution of inferred trees, clade support, and accuracy. No single locus emerged as the best in all lineages for any of these measures of utility. Results further indicated that in preliminary studies, sampling strategy should include at least four exemplar taxa. The importance of sampling data from independent distributions is also discussed.  相似文献   

3.
A molecular phylogenetic analysis was conducted to determine relationships and to investigate character evolution in the Phytomyza ilicis group of leafmining flies on hollies (Aquifoliaceae: Ilex). A total of 2207 bp of the mitochondrial cytochrome oxidase I and II genes were sequenced for all known holly leafminers, as well as for several undescribed members of this group. Maximum-parsimony analysis of the sequence data indicates that these leafminers form a monophyletic group with the inclusion of an undescribed leafminer that feeds on the distantly related plant Gelsemium sempevirens (Loganiaceae). Species boundaries of previously known and of undescribed holly leafmining species were confirmed with the molecular data, with one exception. Optimization of variable ecological and morphological characters onto the most parsimonious phylogeny suggests that these traits are evolutionarily labile, requiring multiple instances of convergence and/or reversal to explain their evolutionary history. Speciation in holly leafminers is associated with host shifts and appears to involve colonization of new hosts more often than cospeciation as the hosts diverge. Monophagy is the most common feeding pattern in holly leafminers, and more generalized feeding is inferred to have evolved at least two separate times, possibly as a prelude to speciation.  相似文献   

4.
The discrepancy between theoretical and observed distributions of tree shapes in recent surveys of phylogeny estimates has lead to investigations of possible biological and methodological causes. I investigated whether the phylogenetic quality of characters is related to the tree shape on which they evolve. Simulated evolution revealed shape-related tendencies for characters to indicate correct cladistic relationships; these differences were measured by examining the characters directly, without deriving any phylogeny estimates. Tree stemminess indices correlated strongly with character quality when characters evolved either speciationally or phyletically. Tree balance was a significant correlate of character quality under speciational evolution but not under phyletic evolution. These results help explain the findings of other simulation studies. With additional study of the behavior of evolving characters and their interaction with phylogenetic methods, we might be able to increase the accuracy of tree estimation and compensate for potential biases related to shape. These results give further reason for caution in trusting phylogeny estimates.  相似文献   

5.
Abstract. Historically, characters from early animal development have been a potentially rich source of phylogenetic information, but many traits associated with the gametes and larval stages of animals with complex life cycles are widely suspected to have evolved frequent convergent similarities. Such convergences will confound true phylogenetic relationships. We compared phylogenetic inferences based on early life history traits with those from mitochondrial DNA sequences for sea stars in the genera Asterina, Cryptasterina , and Patiriella (Valvatida: Asterinidae). Analysis of these two character sets produced phylogenies that shared few clades. We quantified the degree of homoplasy in each character set when mapped onto the phylogeny inferred from the alternative characters. The incongruence between early life history and nucleotide characters implies more homoplasy in the life history character set. We suggest that the early life history traits in this case are most likely to be misleading as phylogenetic characters because simple adaptive models predict convergence in early life histories. We show that adding early life history characters may slightly improve a phylogeny based on nucleotide sequences, but adding nucleotide characters may be critically important to improving inferences from phylogenies based on early life history characters.  相似文献   

6.
The phylogenetic placements of several African endemic genera at the base of Apiaceae subfamilies Saniculoideae and Apioideae have revolutionized ideas of relationships that affect hypotheses of character evolution and biogeography. Using an explicit phylogeny of subfamily Saniculoideae, we reconstructed the evolutionary history of phenotypic characters traditionally important in classification, identified those characters most useful in supporting relationships, and inferred historical biogeography. The 23 characters examined include those of life history, vegetative morphology, inflorescences, and fruit morphology and anatomy. These characters were optimized over trees derived from maximum parsimony analysis of chloroplast DNA trnQ-trnK sequences from 94 accessions of Apiaceae. The results revealed that many of these characters have undergone considerable modification and that traditional assumptions regarding character-state polarity are often incorrect. Infrasubfamilial relationships inferred by molecular data are supported by one to five morphological characters. However, none of these morphological characters support the monophyly of subfamilies Saniculoideae or Apioideae, the clade of Petagnaea, Eryngium and Sanicula, or the sister-group relationship between Eryngium and Sanicula . Southern African origins of Saniculoideae and of its tribes Steganotaenieae and Saniculeae are supported based on dispersal-vicariance analysis.  相似文献   

7.
The phylogenetic position of the Heterodoxus octoseriatus group is inferred from morphological characters. Two character states support monophyly of this group. Another indicates that its sister-group is a group of 11 other Heterodoxus species (here called the H. calabyi group), that infest at least seven other genera of macropodid marsupials. Fourteen potential apomorphies, associated with the male and female genitalia, are identified. Evident rapid and divergent evolution of the genitalia, however, precludes determination of their polarity by comparison with an out-group (the sister-group). Consequently, phylogeny in the H. octoseriatus group is inferred from the close similarity of morphological characters. In light of the phylogenetic analysis and a phenogram, speciation and the evolution of morphological characters in the H. octoseriatus group is discussed.  相似文献   

8.
After more than two centuries of research, more than 65,000 living and fossil ostracod species have been described and studied, yet much remains to be learned about this ancient, widespread and diverse group of bivalved arthropods. Their higher classification and phylogeny are subjects of vigorous debate, as is their position in the broader picture of crustacean phylogeny. At the same time, major advances in our understanding of ostracod lineages and their relationships are resulting from the application of innovative approaches and techniques. This preface provides a contextual overview of the 15 contributions to this volume, which resulted from the 14th International Symposium on Ostracoda (ISO2001) held in 2001at Shizuoka, Japan. As such it provides a cross-section of topics at the forefront of research on the evolution and diversity of Ostracoda, and indicates directions for future work.  相似文献   

9.
Dating evolutionary origins of taxa is essential for understanding rates and timing of evolutionary events, often inciting intense debate when molecular estimates differ from first fossil appearances. For numerous reasons, ostracods present a challenging case study of rates of evolution and congruence of fossil and molecular divergence time estimates. On the one hand, ostracods have one of the densest fossil records of any metazoan group. However, taxonomy of fossil ostracods is controversial, owing at least in part to homoplasy of carapaces, the most commonly fossilized part. In addition, rates of evolution are variable in ostracods. Here, we report evidence of extreme variation in the rate of molecular evolution in different ostracod groups. This rate is significantly elevated in Halocyprid ostracods, a widespread planktonic group, consistent with previous observations that planktonic groups show elevated rates of molecular evolution. At the same time, the rate of molecular evolution is slow in the lineage leading to Manawa staceyi, a relict species that we estimate diverged approximately 500 million years ago from its closest known living relative. We also report multiple cases of significant incongruence between fossil and molecular estimates of divergence times in Ostracoda. Although relaxed clock methods improve the congruence of fossil and molecular divergence estimates over strict clock models, incongruence is present regardless of method. We hypothesize that this observed incongruence is driven largely by problems with taxonomy of fossil Ostracoda. Our results illustrate the difficulty in consistently estimating lineage divergence times, even in the presence of a voluminous fossil record.  相似文献   

10.
Ascidians exhibit two different modes of development. A tadpole larva is formed during urodele development, whereas the larval phase is modified or absent during anural development. Anural development is restricted to a small number of species in one or possibly two ascidian families and is probably derived from ancestors with urodele development. Anural and urodele ascidians constitute a model system in which to study the evolution of development, but the phylogeny of anural development has not been resolved. Classification based on larval characters suggests that anural species are monophyletic, whereas classification according to adult morphology suggests they are polyphyletic. In the present study, we have inferred the origin of anural development using rDNA sequences. The central region of 18S rDNA and the hypervariable D2 loop of 28S rDNA were amplified from the genomic DNA of anural and urodele ascidian species by the polymerase chain reaction and sequenced. Phylogenetic trees inferred from 18S rDNA sequences of 21 species placed anural developers into two discrete groups corresponding to the Styelidae and Molgulidae, suggesting that anural development evolved independently in these families. Furthermore, the 18S rDNA trees inferred at least four independent origins of anural development in the family Molgulidae. Phylogenetic trees inferred from the D2 loop sequences of 13 molgulid species confirmed the 18S rDNA phylogeny. Anural development appears to have evolved rapidly because some anural species are placed as closely related sister groups to urodele species. The phylogeny inferred from rDNA sequences is consistent with molgulid systematics according to adult morphology and supports the polyphyletic origin of anural development in ascidians. Correspondence to: W.R. Jeffery  相似文献   

11.
Several empirical studies suggest that sexually selected characters, including bird plumage, may evolve rapidly and show high levels of convergence and other forms of homoplasy. However, the processes that might generate such convergence have not been explored theoretically. Furthermore, no studies have rigorously addressed this issue using a robust phylogeny and a large number of signal characters. We scored the appearance of 44 adult male plumage characters that varied across New World orioles (Icterus). We mapped the plumage characters onto a molecular phylogeny based on two mitochondrial genes. Reconstructing the evolution of these characters revealed evidence of convergence or reversal in 42 of the 44 plumage characters. No plumage character states are restricted to any groups of species higher than superspecies in the oriole phylogeny. The high frequency of convergence and reversal is reflected in the low overall retention index (RI = 0.66) and the low overall consistency index (CI = 0.28). We found similar results when we mapped plumage changes onto a total evidence tree. Our findings reveal that plumage patterns and colors are highly labile between species of orioles, but highly conserved within the oriole genus. Furthermore, there are at least two overall plumage types that have convergently evolved repeatedly in the three oriole clades. This overall convergence leads to significant conflict between the molecular and plumage data. It is not clear what evolutionary processes lead to this homoplasy in individual characters or convergence in overall pattern. However, evolutionary constraints such as developmental limitations and genetic correlations between characters are likely to play a role. Our results are consistent with the belief that avian plumage and other sexually selected characters may evolve rapidly and may exhibit high homoplasy. The overall convergence in oriole plumage patterns is an interesting evolutionary phenomenon, but it cautions against heavy reliance on plumage characters for constructing phylogenies.  相似文献   

12.
Smith ND 《PloS one》2010,5(10):e13354

Background

Debate regarding the monophyly and relationships of the avian order Pelecaniformes represents a classic example of discord between morphological and molecular estimates of phylogeny. This lack of consensus hampers interpretation of the group''s fossil record, which has major implications for understanding patterns of character evolution (e.g., the evolution of wing-propelled diving) and temporal diversification (e.g., the origins of modern families). Relationships of the Pelecaniformes were inferred through parsimony analyses of an osteological dataset encompassing 59 taxa and 464 characters. The relationships of the Plotopteridae, an extinct family of wing-propelled divers, and several other fossil pelecaniforms (Limnofregata, Prophaethon, Lithoptila, ?Borvocarbo stoeffelensis) were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification.

Methodology/Principal Findings

Pelecaniform monophyly is not recovered, with Phaethontidae recovered as distantly related to all other pelecaniforms, which are supported as a monophyletic Steganopodes. Some anatomical partitions of the dataset possess different phylogenetic signals, and partitioned analyses reveal that these discrepancies are localized outside of Steganopodes, and primarily due to a few labile taxa. The Plotopteridae are recovered as the sister taxon to Phalacrocoracoidea, and the relationships of other fossil pelecaniforms representing key calibration points are well supported, including Limnofregata (sister taxon to Fregatidae), Prophaethon and Lithoptila (successive sister taxa to Phaethontidae), and ?Borvocarbo stoeffelensis (sister taxon to Phalacrocoracidae). These relationships are invariant when ‘backbone’ constraints based on recent avian phylogenies are imposed.

Conclusions/Significance

Relationships of extant pelecaniforms inferred from morphology are more congruent with molecular phylogenies than previously assumed, though notable conflicts remain. The phylogenetic position of the Plotopteridae implies that wing-propelled diving evolved independently in plotopterids and penguins, representing a remarkable case of convergent evolution. Despite robust support for the placement of fossil taxa representing key calibration points, the successive outgroup relationships of several “stem fossil + crown family” clades are variable and poorly supported across recent studies of avian phylogeny. Thus, the impact these fossils have on inferred patterns of temporal diversification depends heavily on the resolution of deep nodes in avian phylogeny.  相似文献   

13.
The evolutionary history of bioluminescence and iridescence in myodocopid ostracods was estimated by phylogenetic analysis of mitochondrial 16S ribosomal RNA sequences. The inferred phylogeny of the myodocopids suggests that the common ancestor of Myodocopida evaluated in this study exhibits iridescence. This type of light emission was once lost and recaptured independently in the descendant lineages. Bioluminescent species also evolved from non-luminous ancestral species. In the suborder Myodocopina, all the bioluminescent species form a monophyletic group, suggesting that bioluminescence evolved only once. Structural differences between two bioluminescent groups in the order Myodocopida suggests independent origins for bioluminescence.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 449–455.  相似文献   

14.
With the increase of laboratory facilities, molecular phylogenies are playing a predominant role in evolutionary analyses. However, understanding the evolution of morphological traits remains essential for a comprehensive view of the evolution of a group. Here we present a new approach based on co-inertia analysis for identifying characters which variations are dependent to the phylogeny, a prerequisite for analyzing the evolution of characters. Our approach has the advantage of treating the full data set at once, including qualitative and quantitative variables. It provides a graphical output giving the contribution of each variable to the co-structure, allowing a direct discrimination among phylogenetically dependent and independent variables. We have implemented this approach in deciphering the evolution of morphological traits in a highly specialized group of Neotropical catfishes: the Loricariinae. We have first inferred a molecular phylogeny of this group based on the 12S and 16S mitochondrial genes. The resulting phylogeny indicated that the subtribe Harttiini was restricted to the single genus Harttia, and within the subtribe Loricariini, two sister subtribes were distinguished, Sturisomina (new subtribe), and Loricariina. Among Loricariina, the morphological groups Loricariichthys and Loricaria+Pseudohemiodon were confirmed. The co-inertia analysis highlighted a strong relationship between the morphological and the genetic data sets, and identified three quantitative and eight qualitative variables linked to the phylogeny. The evolution of quantitative variables was assessed using the orthogram method and showed a major punctual event in the evolution of the number of caudal-fin rays, and a more gradual pattern of evolution of the number of teeth along the phylogeny. The evolution of qualitative variables was inferred using ancestral states reconstructions and highlighted parallel patterns of evolution in characters linked to the mouth, suggesting co-evolution of the traits for adapting to divergent substrates.  相似文献   

15.
Origin of the Ostracoda and their maxillopodan and hexapodan affinities   总被引:1,自引:1,他引:0  
There are Cambrian fossils attributed to the Ostracoda but the extant subclasses Podocopa and Myodocopa do not appear until the Ordovician. At this time the morphologically similar, free-living ancestors of the now sedentary Thecostraca (Ascothoracida, Acrothoracica and Cirripedia) may have still been extant, and from an ecological point of view it seems likely that, by and large, ostracods replaced them. However, living ostracods have an abbreviated, direct development, and some key aspects of their morphology, such as the nature of the maxillary segment and abdomen, are conjectural. Thus the affinities between these and related taxa remain uncertain; e.g., while some contemporary carcinologists place Ostracoda as a taxon coordinate with the Branchiopoda, Remipedia, Cephalocarida, Maxillopoda, Malacostraca, others tentatively or unequivocally ally them with the Maxillopoda (generally Mystacocarida, Copepoda, Tantulocarida and Thecostraca, and sometimes Branchiura and Pentastomida). Others, largely involved with fossils, have stretched the definition of the Maxillopoda even further, to the point where it seems even less likely a monophyletic taxon. Until recently cladistic analyses utilizing genetic (largely 18S rDNA) as well traditional morphological characteristics have given confusing results regarding the affinities between these taxa, and an important one suggested the Ostracoda might even be diphyletic. Furthermore, a very recent genetic study utilizing protein encoding genes places a podocopine ostracod among the most primitive of the extant crustaceans (Branchiopoda, Cephalocarida Remipedia and Mystacocarida), and then generally at the base of a lineage leading to the Malacostraca, a lineage giving rise to copepods and cirripeds along the way. This indicates these so-called maxillopodan taxa evolved independently from a malacostracan-like ancestor, and if so they are convergent. And finally, from genetic studies it is not only becoming well documented the Crustacea rather than Myriapoda gave rise to the Hexapoda, but it appears the Hexapoda stem from among the lower rather than the higher crustaceans, possibly even from the Ostracoda. Whether there were terrestrial ostracods at the time hexapods appeared in the Lower Ordovician is unknown, but the modest diversity of terrestrial ostracods today are podocopines which also first appeared in the Lower Ordovician. Thus, if current interpretations of living ostracodan and fossil hexapodan body plans are largely correct, it can be hypothesized the Ostracoda are close to the ancestor of the Hexapoda.  相似文献   

16.
? Premise of the Study: Little research has been done at the molecular level on the tribe Fumarieae (Papaveraceae). Papaveraceae is a model plant group for studying evolutionary patterns despite the lack of a reference phylogeny for this tribe. We investigated the phylogenetic relationships within the tribe to complete the molecular data for this family in order to help understand its character evolution and biogeographic pattern. ? Methods: We used maximum-parsimony and Bayesian approaches to analyze five DNA regions for 25 species representing 10 of the 11 Fumarieae genera and five outgroups. Evolutionary pathways of four characters (habit, life span, type of fruit, and number of seeds per fruit) were inferred on the phylogeny using parsimony. The ancestral distribution areas were reconstructed using dispersal-vicariance analysis. ? Key Results: Fumarieae is monophyletic and includes three groups that agree with the morphology-based subtribes: Discocapninae, Fumariinae, and Sarcocapninae. Within subtribes, the relationships among genera were different from those obtained with morphological data. Annual life span, nonchasmophytic habit, and a several-seeded capsule were the basal character states for the tribe. The ancestor occupied a continuous area between West Eurasia and Africa. Vicariances explain the divergence between lineages Discocapninae (South Africa) and Fumariinae-Sarcocapninae (Mediterranean), and the disjunction of Fumariinae (Mediterranean-Central Asia). ? Conclusions: Molecular phylogeny confirms the subtribal classification of Fumarieae based on morphology. However it provides different results regarding the relationships among genera within each subtribe, which affects the inference of the evolutionary pathway followed by the four selected characters. The disjunct distribution of the tribe is explained by different vicariance scenarios.  相似文献   

17.
Hypothesized relationships between ontogenetic and phylogenetic change in morphological characters were empirically tested in centrarchid fishes by comparing observed patterns of character development with patterns of character evolution as inferred from a representative phylogenetic hypothesis. This phylogeny was based on 56–61 morphological characters that were polarized by outgroup comparison. Through these comparisons, evolutionary changes in character ontogeny were categorized in one of eight classes (terminal addition, terminal deletion, terminal substitution, non-terminal addition, non-terminal deletion, non-terminal substitution, ontogenetic reversal and substitution). The relative frequencies of each of these classes provided an empirical basis from which assumptions underlying hypothesized relationships between ontogeny and phylogeny were tested. In order to test hypothesized relationships between ontogeny and phylogeny that involve assumptions about the relative frequencies of terminal change (e.g. the use of ontogeny as a homology criterion), two additional phylogenies were generated in which terminal addition and terminal deletion were maximized and minimized for all characters. Character state change interpreted from these phylogenies thus represents the maxima and minima of the frequency range of terminal addition and terminal deletion for the 8.7 × 1036 trees possible for centrarchids. It was found for these data that terminal change accounts for c. 75% of the character state change. This suggests either that early ontogeny is conserved in evolution or that interpretation and classification of evolutionary changes in ontogeny is biased in part by the way that characters are recognized, delimited and coded. It was found that ontogenetic interpretation is influenced by two levels of homology decision: an initial decision involving delimitation of the character (the ontogenetic sequence), and the subsequent recognition of homologous components of developmental sequences. Recognition of phylogenetic homology among individual components of developmental sequences is necessary for interpretation of evolutionary changes in ontogeny as either terminal or non-terminal. If development is the primary criterion applied in recognizing individual homologies among parts of ontogenetic sequences, the only possible interpretation of phylogenetic differences is that of terminal change. If homologies of the components cannot be ascertained, recognition of the homology of the developmental sequence as a whole will result in the interpretation of evolutionary differences as substitutions. Particularly when the objective of a study is to discover how ontogeny has evolved, criteria in addition to ontogeny must be used to recognize homology. Interpretation is also dependent upon delimitation within an ontogenetic sequence. This is in part a function of the way that an investigator ‘sees’ and codes characters. Binary and multistate characters influence interpretation differently and predictably. The use of ontogeny for determining phylogenetic polarity as previously proposed rests on the assumptions that ancestral ontogenies are conserved and that character evolution occurs predominantly through terminal addition. It was found for these data that terminal addition may comprise a maximum of 51.9% of the total character state change. It is concluded that the ontogenetic criterion is not a reliable indicator of phylogenetic polarity. Process and pattern data are collected simultaneously by those engaged in comparative morphological studies of development. The set of alternative explanatory processes is limited in the process of observing development. These form necessary starting points for the research of developmental biologists. Separating ‘empirical’ results from interpretational influences requires awareness of potential biases in the course of character selection, coding and interpretation. Consideration of the interpretational problems involved in identifying and classifying phylogenetic changes in ontogeny leads to a re-evaluation of the purpose, usefulness and information conveyed by the current classification system. It is recommended that alternative classification schemes be pursued.  相似文献   

18.
裸藻类植物的分支系统学研究   总被引:1,自引:0,他引:1  
本文选取了裸藻类的33个属级分类单位,以及它们的35个性状,利用分支系统学的原理和方法,对性状的演化极性进行了分析,同时对性状间的极性关系进行了和谐性分析,使性状间极性关系处在较为合理的状态,然后建立了分支分析的数据矩阵。应用徐克学建立的“演化极端结合法”进行微机运算.得简约系数远小于1(o.2159)的分支谱系图。根据分支诺系图对裸藻类的系统发育关系进行了探讨,井与已有的关于裸藻类分类系统和演化假设进行了比较。在此基础上按照裸藻类的亲缘关系及单系原则,对裸藻类的分类等级进行了划分,初步提出了建立1门1纲5目的分类系统。按照在分支谱系中的演化地位,认为裸藻属的5个亚属,明显地都应是独立的属。同时对裸藻类的共生起源与演化的关系也进行了讨论。  相似文献   

19.
A phylogenetic analysis of the interrelationships of the barbets (Capitonidae) and the toucans (Aves: Ramphastidae, Superfamily Ramphastoidea) is presented. Thirty-two morphological characters from the literature and independent osteological observations were analysed. Character polarity was determined by outgroup comparison to the Picidae, Indicatoridae, Galbulidae, Bucconidae and Coraciiformes. Four alternative phylogenetic hypotheses were compared: (1) the overall most parsimonious morphological phylogeny, (2) the most parsimonious morphological phylogeny in which the capitonids and ramphastids were hypothesized as monophyletic sister groups, and (3) and (4) the most parsimonious hypotheses for the evolution of the morphological characters within two proposed DNA-DNA hybridization phylogenies of the ramphastoids. The analysis focused on the higher level relationships of ramphastids and capitonids and interrelationships among capitonid genera. Two cladistic analyses were performed using 26 phylogenetically informative characters, and the PAUP and CONTREE computer alogorithms. The most parsimonious morphological phylogeny required fewer character changes and had a lower consistency index than any of the alternative hypotheses but congruence between the most parsimonious phylogeny and the second, revised DNA-DNA hybridization hypothesis was very high. Based on these results the monophyly of the Capitonidae is rejected. The ramphastids and the Neotropical capitonids form a well corroborated clade within the pantropical ramphastoid radiation. Neither the African, Asian nor New World capitonids is monophyletic. The genus Trachyphonus is the sister group to all other capitonids and ramphastids. The sister group to the ramphastids is the genus Semnornis. The interrelationships of the Old World capitonids excluding Trachyphonus are not completely resolved by these morphological data but one of the alternative phylogenetic resolutions is presented as a preliminary hypothesis. The clades in this resolved phylogeny are diagnosed and the palaeontology and biogeography of the ramphastoids arc-reviewed in light of this new evidence. A phylogenetic classification is proposed in which the Capitonidae is rejected and the capitonids and ramphastids are placed in seven subfamilies of the Ramphastidae.  相似文献   

20.
Convergence and parallelism: is a new life ahead of old concepts?   总被引:2,自引:0,他引:2  
In comparative biology, character observations initially separate similar and dissimilar characters. Only similar characters are considered for phylogeny reconstruction; their homology is attested in a two‐step process, firstly a priori of phylogeny reconstruction by accurate similarity statements, and secondly a posteriori of phylogeny analysis by congruence with other characters. Any pattern of non‐homology is then a homoplasy, commonly, but vaguely, associated with “convergence”. In this logical scheme, there is no way to analyze characters which look similar, but cannot meet usual criteria for homology statements, i.e., false similarity detected a priori of phylogenetic analysis, even though such characters may represent evolutionarily significant patterns of character transformations. Because phylogenies are not only patterns of taxa relationships but also references for evolutionary studies, we propose to redefine the traditional concepts of parallelism and convergence to associate patterns of non‐homology with explicit theoretical contexts: homoplasy is restricted to non‐similarity detected a posteriori of phylogeny analysis and related to parallelism; non‐similarity detected a priori of phylogenetic analysis and necessarily described by different characters would then correspond to a convergence event s. str. We propose to characterize these characters as heterologous (heterology). Heterology and homoplasy correspond to different non‐similarity patterns and processes; they are also associated with different patterns of taxa relationships: homoplasy can occur only in non‐sister group taxa; no such limit exists for heterology. The usefulness of these terms and concepts is illustrated with patterns of acoustic evolution in ensiferan insects. © The Willi Hennig Society 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号