首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diphosphate-modified substrates for prenyltransferase were synthesized and examined as substrates for the prenyltransferase reaction. They were dimethylallyl methylenediphosphonate, geranyl methylenediphosphonate, geranyl imidodiphosphate, geranyl phosphosulfate, farnesyl methylenediphosphonate, farnesyl imidodiphosphate, and farnesyl phosphosulfate. All of them except dimethylallyl methylenediphosphonate were accepted as substrates by solanesyl diphosphate synthase to give solanesyl diphosphate and the former four analogs were also accepted as substrates by farnesyl diphosphate synthase to give farnesyl diphosphate. The Km values of both enzymes for the methylenediphosphonate and imidodiphosphate analogs were comparable to those of the corresponding diphosphate substrates, but the phosphosulfate analogs showed much greater Km values than the diphosphate substrates. On the other hand, the Vmax values for these artificial substrates were all smaller than those for the corresponding natural substrates. Kinetic experiments with the analogs showed that the ionization-condensation-elimination mechanism proposed for the farnesyl diphosphate synthase reaction holds also for the solanesyl diphosphate synthase reaction and that the diphosphoryl structure, capable of chelating with divalent cations, is important topologically and kinetically rather than thermodynamically.  相似文献   

2.
Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.  相似文献   

3.
Ubiquinone (coenzyme Q) is the generic name of a class of lipid-soluble electron carriers formed of a redox active benzoquinone ring attached to a prenyl side chain. The length of the latter varies among species, and depends upon the product specificity of a trans-long-chain prenyl diphosphate synthase that elongates an allylic diphosphate precursor. In Arabidopsis, this enzyme is assumed to correspond to an endoplasmic reticulum-located solanesyl diphosphate synthase, although direct genetic evidence was lacking. In this study, the reconstruction of the functional network of Arabidopsis genes linked to ubiquinone biosynthesis singled out an unsuspected solanesyl diphosphate synthase candidate--product of gene At2g34630--that, extraordinarily, had been shown previously to be targeted to plastids and to contribute to the biosynthesis of gibberellins. Green fluorescent protein (GFP) fusion experiments in tobacco and Arabidopsis, and complementation of a yeast coq1 knockout lacking mitochondrial hexaprenyl diphosphate synthase demonstrated that At2g34630 is also targeted to mitochondria. At2g34630 is the main--if not sole--contributor to solanesyl diphosphate synthase activity required for the biosynthesis of ubiquinone, as demonstrated by the dramatic (75-80%) reduction of the ubiquinone pool size in corresponding RNAi lines. Overexpression of At2g34630 gave up to a 40% increase in ubiquinone content compared to wild-type plants. None of the silenced or overexpressing lines, in contrast, displayed altered levels of plastoquinone. Phylogenetic analyses revealed that At2g34630 is the only Arabidopsis trans-long-chain prenyl diphosphate synthase that clusters with the Coq1 orthologs involved in the biosynthesis of ubiquinone in other eukaryotes.  相似文献   

4.
The isoprenoid chain of ubiquinone (Q) is determined by trans-polyprenyl diphosphate synthase in micro-organisms and presumably in mammals. Because mice and humans produce Q9 and Q10, they are expected to possess solanesyl and decaprenyl diphosphate synthases as the determining enzyme for a type of ubiquinone. Here we show that murine and human solanesyl and decaprenyl diphosphate synthases are heterotetramers composed of newly characterized hDPS1 (mSPS1) and hDLP1 (mDLP1), which have been identified as orthologs of Schizosaccharomyces pombe Dps1 and Dlp1, respectively. Whereas hDPS1 or mSPS1 can complement the S. pombe dps1 disruptant, neither hDLP1 nor mDLP1 could complement the S. pombe dLp1 disruptant. Thus, only hDPS1 and mSPS1 are functional orthologs of SpDps1. Escherichia coli was engineered to express murine and human SpDps1 and/or SpDlp1 homologs and their ubiquinone types were determined. Whereas transformants expressing a single component produced only Q8 of E. coli origin, double transformants expressing mSPS1 and mDLP1 or hDPS1 and hDLP1 produced Q9 or Q10, respectively, and an in vitro activity of solanesyl or decaprenyl diphosphate synthase was verified. The complex size of the human and murine long-chain trans-prenyl diphosphate synthases, as estimated by gel-filtration chromatography, indicates that they consist of heterotetramers. Expression in E. coli of heterologous combinations, namely, mSPS1 and hDLP1 or hDPS1 and mDLP1, generated both Q9 and Q10, indicating both components are involved in determining the ubiquinone side chain. Thus, we identified the components of the enzymes that determine the side chain of ubiquinone in mammals and they resembles the S. pombe, but not plant or Saccharomyces cerevisiae, type of enzyme.  相似文献   

5.
Solanesyl diphosphate (SPP) is regarded as the precursor of the side-chains of both plastoquinone and ubiquinone in Arabidopsis thaliana. We previously analyzed A. thaliana SPP synthase (At-SPS1) (Hirooka et al., Biochem. J., 370, 679-686 (2003)). In this study, we cloned a second SPP synthase (At-SPS2) gene from A. thaliana and characterized the recombinant protein. Kinetic analysis indicated that At-SPS2 prefers geranylgeranyl diphosphate to farnesyl diphosphate as the allylic substrate. Several of its features, including the substrate preference, were similar to those of At-SPS1. These data indicate that At-SPS1 and At-SPS2 share their basic catalytic machinery. Moreover, analysis of the subcellular localization by the transient expression of green fluorescent protein-fusion proteins showed that At-SPS2 is transported into chloroplasts, whereas At-SPS1 is likely to be localized in the endoplasmic reticulum in the A. thaliana cells. It is known that the ubiquinone side-chain originates from isopentenyl diphosphate derived from the cytosolic mevalonate pathway, while the plastoquinone side-chain is synthesized from isopentenyl diphosphate derived from the plastidial methylerythritol phosphate pathway. Based on this information, we propose that At-SPS1 contributes to the biosynthesis of the ubiquinone side-chain and that At-SPS2 supplies the precursor of the plastoquinone side-chain in A. thaliana.  相似文献   

6.
Zhang YW  Li XY  Koyama T 《Biochemistry》2000,39(41):12717-12722
Among prenyltransferases, medium-chain (E)-prenyl diphosphate synthases are unusual because of their heterodimeric structures. The larger subunit has highly conserved regions typical of (E)-prenyltransferases. The smaller one has recently been shown to be involved in the binding of allylic substrate as well as determining the chain length of the reaction product [Zhang, Y.-W., et al. (1999) Biochemistry 38, 14638-14643]. To better understand the product chain length determination mechanism of these enzymes, several amino acid residues in the larger subunits of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase and Bacillus subtilis heptaprenyl diphosphate synthase were selected for substitutions by site-directed mutagenesis and examined by combination with the corresponding wild-type or mutated smaller subunits. Replacement of the Ala at the fifth position upstream to the first Asp-rich motif with bulky amino acids in both larger subunits resulted in shortening the chain lengths of the major products, and a double combination of mutant subunits of the heptaprenyl diphosphate synthase, I-D97A/II-A79F, yielded exclusively geranylgeranyl diphosphate. However, the combination of a mutant subunit and the wild-type, I-Y103S/II-WT or I-WT/II-I76G, produced a C(40) prenyl diphosphate, and the double combination of the mutants, I-Y103S/II-I76G, gave a reaction product with longer prenyl chain up to C(50). These results suggest that medium-chain (E)-prenyl diphosphate synthases take a novel mode for the product chain length determination, in which both subunits cooperatively participate in maintaining and determining the product specificity of each enzyme.  相似文献   

7.
A member of the medium-chain prenyl diphosphate synthases, Bacillus stearothermophilus heptaprenyl diphosphate synthase, catalyzes the consecutive condensation of isopentenyl diphosphate with allylic diphosphate to produce (all-E)-C35 prenyl diphosphate as the ultimate product. We previously showed that the product specificity of short-chain prenyl diphosphate synthases is regulated by the structure around the first aspartate-rich motif (FARM). The FARM is also conserved in a subunit of heptaprenyl diphosphate synthase, component II', which suggests that the structure around the FARM of component II' regulates the elongation. To determine whether component II' regulates the product chain length by a mode similar to that of the short-chain prenyl diphosphate synthases, we replaced a bulky amino acid at the eighth position before the FARM of component II', isoleucine 76, by glycine and analyzed the product specificity. The mutated enzyme, I76G, can catalyze condensations of isopentenyl diphosphate beyond the native chain length of C35. Moreover, two mutated enzymes of A79Y and S80F, which have a single replacement to the aromatic residue at the fourth or the fifth position before the FARM, mainly yielded a C20 product. These results strongly suggest that a common mechanism controls the product chain length of both short-chain and medium-chain prenyl diphosphate synthases and that, in wild-type heptaprenyl diphosphate synthase, the prenyl chain can grow on the surface of the small residues at positions 79 and 80, and the elongation is precisely blocked at the length of C35 by isoleucine 76.  相似文献   

8.
Two solanesyl diphosphate synthases, designated SPS1 and SPS2, which are responsible for the synthesis of the isoprenoid side chain of either plastoquinone or ubiquinone in Arabidopsis thaliana, were identified. Heterologous expression of either SPS1 or SPS2 allowed the generation of UQ-9 in a decaprenyl diphosphate synthase-defective strain of fission yeast and also in wild-type Escherichia coli. SPS1-GFP was found to localize in the ER while SPS2-GFP localized in the plastid of tobacco BY-2 cells. These two different subcellular localizations are thought to be the reflection of their roles in solanesyl diphosphate synthesis in two different parts: presumably SPS1 and SPS2 for the side chains of ubiquinone and plastoquinone, respectively.  相似文献   

9.
Localization of farnesyl diphosphate synthase in chloroplasts.   总被引:4,自引:0,他引:4  
The subcellular localization of plant farnesyl diphosphate synthase (FPPS) was examined. Immunocytochemical staining using anti-FPPS1 antibody followed by electron microscopy showed that FPPS1 was localized to chloroplasts of rice mesophyll cells. Subcellular fractions from wheat leaves were examined by immunoblot analysis. FPPS was detected in the chloroplast fraction in wheat, and was protected from proteolysis following trypsin treatment of chloroplasts. FPPS was also detected in the chloroplast fraction of a dicot plant, tobacco.  相似文献   

10.
11.
Kloer DP  Welsch R  Beyer P  Schulz GE 《Biochemistry》2006,45(51):15197-15204
The crystal structure of the geranylgeranyl diphosphate synthase from Sinapis alba (mustard) has been solved in two crystal forms at 1.8 and 2.0 A resolutions. In one of these forms, the dimeric enzyme binds one molecule of the final product geranylgeranyl diphosphate in one subunit. The chainfold of the enzyme corresponds to that of other members of the farnesyl diphosphate synthase family. Whereas the binding modes of the two substrates dimethylallyl diphosphate and isopentenyl diphosphate at the allyl and isopentenyl sites, respectively, have been established with other members of the family, the complex structure presented reveals for the first time the binding mode of a reaction product at the isopentenyl site. The binding geometry of substrates and product in conjunction with the protein environment and the established chemistry of the reaction provide a clear picture of the reaction steps and atom displacements. Moreover, a comparison with a ligated homologous structure outlined an appreciable induced fit: helix alpha8 and its environment undergo a large conformational change when either the substrate dimethylallyl diphosphate or an analogue is bound to the allyl site; only a minor conformational change occurs when the other substrate isopentenyl diphosphate or the product is bound to the isopentenyl site.  相似文献   

12.
Farnesyl diphosphate synthase (FPPase) catalyzes chain elongation of the C(5) substrate dimethylallyl diphosphate (DMAPP) to the C(15) product farnesyl diphosphate (FPP) by addition of two molecules of isopentenyl diphosphate (IPP). The synthesis of FPP proceeds in two steps, where the C(10) product of the first addition, geranyl diphosphate (GPP), is the substrate for the second addition. The product selectivity of avian FPPase was altered to favor synthesis of GPP by site-directed mutagenesis of residues that form the binding pocket for the hydrocarbon residue of the allylic substrate. Amino acid substitutions that reduced the size of the binding pocket were identified by molecular modeling. FPPase mutants containing seven promising modifications were constructed. Initial screens using DMAPP and GPP as substrates indicated that two of the substitutions, A116W and N144'W, strongly discriminated against binding of GPP to the allylic site. These observations were confirmed by an analysis of the products from reactions with DMAPP in the presence of excess IPP and by comparing the steady-state kinetic constants for the wild-type enzyme and the A116W and N114W mutants.  相似文献   

13.
14.
We and others have recently shown that the major molecular target of nitrogen-containing bisphosphonate drugs is farnesyl diphosphate synthase, an enzyme in the mevalonate pathway. In an in vitro screen, we discovered a bisphosphonate, NE21650, that potently inhibited farnesyl diphosphate synthase but, unlike other N-BPs investigated, was also a weak inhibitor of isopentenyl diphosphate isomerase. NE21650 was a more potent inhibitor of protein prenylation in osteoclasts and macrophages, and a more potent inhibitor of bone resorption in vitro, than alendronate, despite very similar IC(50) values for inhibition of farnesyl diphosphate synthase. Our observations show that minor changes to the structure of bisphosphonates allow inhibition of more than one enzyme in the mevalonate pathway and suggest that loss of protein prenylation due to inhibition of more than one enzyme in the mevalonate pathway may lead to an increase in antiresorptive potency compared to bisphosphonates that only inhibit farnesyl diphosphate synthase.  相似文献   

15.
The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase from the bacterium, Pantoea ananatis, was studied. In most types of short-chain (all-E) prenyl diphosphate synthases, bulky amino acids at the fourth and/or fifth positions upstream from the first aspartate-rich motif play a primary role in the product determination mechanism. However, type II geranylgeranyl diphosphate synthase lacks such bulky amino acids at these positions. The second position upstream from the G(Q/E) motif has recently been shown to participate in the mechanism of chain length determination in type III geranylgeranyl diphosphate synthase. Amino acid substitutions adjacent to the residues upstream from the first aspartate-rich motif and from the G(Q/E) motif did not affect the chain length of the final product. Two amino acid insertion in the first aspartate-rich motif, which is typically found in bacterial enzymes, is thought to be involved in the product determination mechanism. However, deletion mutation of the insertion had no effect on product chain length. Thus, based on the structures of homologous enzymes, a new line of mutants was constructed in which bulky amino acids in the alpha-helix located at the expected subunit interface were replaced with alanine. Two mutants gave products with longer chain lengths, suggesting that type II geranylgeranyl diphosphate synthase utilizes an unexpected mechanism of chain length determination, which requires subunit interaction in the homooligomeric enzyme. This possibility is strongly supported by the recently determined crystal structure of plant type II geranylgeranyl diphosphate synthase.  相似文献   

16.
Geranylgeranyl diphosphate (GGPP) synthase (GGPPSase) catalyzes the synthesis of GGPP, which is an important molecule responsible for the C20-prenylated protein biosynthesis and for the regulation of a nuclear hormone receptor (LXR.RXR). The human GGPPSase cDNA encodes a protein of 300 amino acids which shows 16% sequence identity with the known human farnesyl diphosphate (FPP) synthase (FPPSase). The GGPPSase expressed in Escherichia coli catalyzes the GGPP formation (240 nmol/min/mg) from FPP and isopentenyl diphosphate. The human GGPPSase behaves as an oligomeric molecule with 280 kDa on a gel filtration column and cross-reacts with an antibody directed against bovine brain GGPPSase, which differs immunochemically from bovine brain FPPSase. Northern blot analysis indicates the presence of two forms of the mRNA.  相似文献   

17.
18.
紫杉二烯是紫杉醇合成途径中的前体物质。紫杉醇是红豆杉的一种重要的次级代谢产物,是一种重要的新型抗癌药物。然而,紫杉醇在植物中含量低且难提取,限制了高效应用。利用基因工程手段,借助担子菌类真菌灰盖鬼伞具有的内源类异戊二烯合成途径,构建含有牻牛儿基牻牛儿基焦磷酸(Geranylgeranyl diphosphate,GGPP)合酶和紫杉二烯合酶的融合基因表达载体p Bg GGTS和独立表达盒表达载体p Bg GGg TS,并分别转入灰盖鬼伞LT2菌株中,经过选择性筛选、PCR鉴定、Southern blotting杂交验证,分别获得了5株融合表达的灰盖鬼伞工程菌和5株独立表达盒的灰盖鬼伞工程菌株。各随机挑选了1株工程菌株,分别提取菌丝体和发酵液分析。GC-MS分析表明,两种工程菌株与原出发菌株的菌丝提取物无明显差异峰,而与出发菌株的发酵液提取物相比,两种转基因灰盖鬼伞的发酵液中均出现了明显的差异峰,采用GC-MS特征质量离子分析方法判定为紫杉二烯,分别为44 ng/L(转化p Bg GGg TS)和30 ng/L(转化p Bg GGTS)。结果表明,通过在灰盖鬼伞融合基因或各自独立表达的形式共表达ggpps和ts基因,可以生物合成紫杉二烯。  相似文献   

19.
The levels of dolichyl phosphate and 2,3-dehydrodolichyl diphosphate synthase were determined in seminiferous tubules of prepuberal rats to assess any changes occurring during early stages of spermatogenesis. Dolichyl phosphate increased in concentration two- to threefold from Day 10 to Day 23 after birth. A method was optimized to measure dehydrodolichyl diphosphate synthesis from delta 3-[14C]isopentenyl diphosphate and t,t-farnesyl diphosphate in homogenates of seminiferous tubules. Both dehydrodolichyl mono- and diphosphates were observed as products of the in vitro assay. The specific activity of tubular synthase increased twofold between Day 7 and Day 23 and decreased similarly between Day 23 and Day 60. Since there was a parallel increase in the concentration of tubular dolichyl phosphate and dehydrodolichyl diphosphate synthase activity during early stages of spermatogenesis, it is proposed that the level of dolichyl phosphate may be controlled at least in part by the regulation of de novo dehydrodolichyl diphosphate biosynthesis. The synthase was also solubilized from tubular membranes with deoxycholate and partially purified by chromatography.  相似文献   

20.
Enzyme characteristics of trans-prenyl diphosphate synthase (Tk-IdsA) from Thermococcus kodakaraensis, which catalyzes the consecutive trans-condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate, were examined. Product analysis revealed that Tk-IdsA is a bifunctional enzyme, farnesyl diphosphate (FPP, C(15))/geranylgeranyl diphosphate (GGPP, C(20)) synthase, and mainly yields both C(15) and C(20). The FPP/GGPP product ratio increases with the rise of the reaction temperature. The kinetic parameters obtained at 70 and 90 degrees C demonstrated that the rise of the temperature elevates the k(0) value for the C(10) allylic substrate to more than those for the C(5) and C(15) allylic substrates. These data suggest that Tk-IdsA contributes to adjust the membrane composition to the cell growth temperature by modulating its substrate and product specificities. Mutation study indicated that the aromatic side chain of Tyr-81 acts as a steric hindrance to terminate the chain elongation and defines the final product length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号