首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD+ glycohydrolase (NAD+ nucleosidase, EC 3.2.2.6) can be solubilized from calf spleen microsomes (microsomal fractions) by steapsin or by detergents to yield respectively a hydrophilic (i.e. water-soluble) and a hydrophobic form of the enzyme. The detergent-solubilized enzyme was successfully reassociated into phosphatidylcholine liposomes either by a cholate-dialysis or by a gel-filtration procedure. In both cases the incorporation of NAD+ glycohydrolase was found to be completely asymmetric, i.e. the active site of the enzyme was exposed only at the outer surface of the vesicles. By contrast, as judged by flotation experiments, the hydrophilic form of NAD+ glycohydrolase could not be reassociated into liposomes. These results are in agreement with the hypothesis that calf spleen NAD+ glycohydrolase is an amphipathic protein. When incorporated into large unilamellar vesicles composed of phosphatidylcholine, NAD+ glycohydrolase was not found to catalyse vectorial transfer of NAD+ by transglycosidation with nicotinamide as acceptor.  相似文献   

2.
The catalytic properties of membrane-bound calf spleen NAD glycohydrolase were studied in comparison with previous data obtained with a solubilized hydrosoluble form of the enzyme. When the hydrolysis of NAD catalyzed by membrane-bound NAD glycohydrolase was studied at pH values below 7.5, only insignificant interference by other NAD-hydrolyzing enzymes was detected, and no proton-diffusional inhibition was observed. The kinetics could, therefore, be followed using a titrimetric assay for NAD glycohydrolase activity. The effect of pH, ionic strength on the kinetic parameters, and shifts in binding constants for several ligands of the membrane-bound enzyme indicate that the NAD glycohydrolase activity is influenced by an electrostatic potential due to negative charges (polyelectrolyte effect). No significant changes in kinetic mechanism could be found between both NAD glycohydrolase forms. The association of the enzyme with the membrane results in a remarkably increased thermal stability, in changes in binding properties of the active site and in the emergence of new inhibitor binding sites; e.g. adenosine 3':5'-monophosphate (cyclic AMP) and adenosine, which do not inhibit the hydrosoluble form of NAD glycohydrolase, are good inhibitors (respectively competitive and mixed) of the membrane-bound enzyme. These data (i.e. allotopic changes) probably can be ascribed to enzyme conformational changes induced and stabilized by interaction with membrane constituents.  相似文献   

3.
The distribution of nicotinamide adenine dinucleotide (NAD) glycohydrolase in rat liver was investigated by subcellular fractionation and by isolation of hepatocytes and sinusoidal cells. The behavior of NAD glycohydrolase in subcellular fractionation was peculiar because, although the enzyme was mainly microsomal, plasma membrane preparations contained distinctly more NAD glycohydrolase than could be accounted for by their content in elements derived from the endoplasmic reticulum or the Golgi complex identified by glucose-6-phosphatase and galactosyltransferase, respectively. When microsomal and plasmalemmal preparations were brought to equilibrium in a linear-density gradient, NAD glycohydrolase differed from these enzymes and behaved like 5'-nucleotidase and alkaline phosphodiesterase I. NAD glycohydrolase was markedly displaced towards higher densities after treatment with digitonin. This behavior in density-gradient centrifugation strongly suggests that NAD glycohydrolase is an exclusive enzyme of the plasma membrane. NAD glycohydrolase differed clearly from other plasmalemmal enzymes when the liver was fractionated into hepatocytes and sinusoidal cells; its specific activity was considerably greater in sinusoidal cell than in hepatocyte preparations. Further subfractionation of sinusoidal cell preparations into endothelial and Kupffer cells by counterflow elutriation showed that NAD glycohydrolase is more active in Kupffer cells. We estimate that the specific activity of NAD glycohydrolase activity is at least 65-fold higher at the periphery of Kupffer cells than at the periphery of hepatocytes. As the enzyme shows not structure-linked latency and is an exclusive constituent of the plasma membranes, we conclude that it is an ectoenzyme that cannot lead to a rapid turnover of the cytosolic pyridine nucleotides.  相似文献   

4.
The interaction between the nicotinamide adenine dinucleotide binding domain of calf spleen NAD glycohydrolase and its ligands has been studied. The use of competitive inhibitors, structurally related to different portions of the NAD molecule (i.e. adenosine and nicotinamide moieties), revealed the considerable importance of the binding between the pyrophosphate linkage and probably an arginyl residue of the active site. This interaction allows the positioning of the substrate in a conformation which permits catalysis to occur. The binding between the 2'-hydroxyl of the adenosine moiety and a residue of the active site, which exists in NAD-linked dehydrogenases, is probably missing in the calf spleen NAD glycohydrolase, based on the inhibition by salicylates, 2'-deoxyadenosine 5'-monophosphate and the hydrolysis of the 2'-deoxyadenosine analogue of NAD. The NAD glycohydrolase could be completely inactivated by 2,3-butanedione, an arginyl-modifying reagent. The reaction followed pseudo-first-order kinetics and the modification was found to be reversible. Woodward's reagent K, a reagent for carboxyl residues, partially inactivated the enzyme, which resulted in a change of the NAD glycohydrolase kinetic parameters Km and V. The inactivation rate was complicated by a parallel decomposition of the reagent.  相似文献   

5.
Erythrocytes from cancer patients exhibited up to fivefold higher NAD glycohydrolase activities than control erythrocytes from normal subjects and also similarly increased [14C] ADP-ribose uptake values. When [adenosine-14C] NAD was used instead of free [14C] ADP-ribose, the uptake was dependent on ecto-NAD glycohydrolase activity. This was reflected in the inhibition of ADP-ribose uptake from [adenosine-14C] NAD by Cibacron Blue. ADP-ribose uptake in erythrocytes appeared to be complex: upon incubation with free [14C] ADP-ribose, the radiolabel associated with erythrocytes was located in nearly equal parts in cytoplasm and plasma membrane. Part of [14C] ADP-ribose binding to the membrane was covalent, as indicated by its resistance to trichloroacetic acid-treatment. A preincubation with unlabeled ADP-ribose depressed subsequent erythrocyte NAD glycohydrolase activity and binding of [14C] ADP-ribose to erythrocyte membrane; but it failed to inhibit the transfer of labeled ADP-ribose to erythrocyte cytoplasm. On the other hand, incubation with [adenosine-14C] NAD did not result in a similar covalent binding of radiolabel to erythrocyte membrane. In line with this finding, a preincubation with unlabeled NAD was not inhibitory on subsequent NAD glycohydrolase reaction and ADP-ribose binding. ADP-ribose binding and NAD glycohydrolase activities were found also in solubilized erythrocyte membrane proteins and, after size fractionation, mainly in a protein fraction of around 45kDa-molecular weight.  相似文献   

6.
NAD+ glycohydrolase, an amphipathic membrane-bound enzyme, solubilized from calf spleen microsomes with detergents and purified, was immobilized by hydrophobic interactions on octyl-Sepharose. Conditions are described for optimal adsorption on the gel. The immobilized enzyme remained catalytically active (hydrolase and transglycosidase activities) and could be used to prepare nicotinic acid analogs of NAD(P)+.  相似文献   

7.
In order to gain a better understanding of the role of ecto-NAD+ glycohydrolase, an enzyme predominantly associated with phagocytic cells, we have studied its fate in murine macrophages (splenic, resident peritoneal and Kupffer cells) during phagocytosis of opsonized on mannosylated latex beads. In parallel, we have also monitored nucleotide pyrophosphatase, another ecto-enzyme of macrophages. Phagosomes were isolated by flotation in a discontinuous sucrose gradient and the enzyme activities were determined with fluorometric methods. Low levels of NAD+ glycohydrolase and nucleotide pyrophosphatase could be measured associated with the phagosomal fractions, eg, respectively less than 4.5% and 10% in spleen macrophages. The phagosomal activities originate from the plasma membrane, ie they were latent and inactivation of ecto-NAD+ glycohydrolase with the diazonium salt of sulfanilic acid resulted in a marked decrease of this enzyme activity in the phagosomal fractions. Pre-labelling of the cell surface by [3H]-galactosylation indicated that NAD+ glycohydrolase is internalized to a lesser extent than an average surface-membrane unit. These results indicate that if ecto-NAD+ glycohydrolase of macrophages can be internalized to a limited extent during phagocytosis of opsonized or mannosylated latex beads, this enzyme appears to be predominantly excluded from the surface area involved in the uptake of such particles.  相似文献   

8.
NAD glycohydrolase, or NADase (NAD+ glycohydrolase, EC 3.2.2.5) was solubilized with porcine pancreatic lipase from isolated fractions of microsomes and plasma membranes obtained from rat livers. The enzyme from each organelle was further purified by DEAE-cellulose chromatography, gel filtration and isoelectric focusing. The solubilized, partially purified enzymes had similar molecular weights, pH-activity profiles and Km values. Marked charge heterogeneity was observed for the microsomal enzyme on isoelectric focusing between pH 6 and 8 with maximum activity focusing at pH 8.0. Plasma membrane NADase displayed a single peak at pH 6.7. Treatment of the partially purified microsomal or plasma membrane enzyme with neuraminidase resulted in a single peak of activity on isoelectric focusing (pH 3.5--10) with a pI of 9.2. Polyacrylamide gel electrophoresis of either NADase revealed a periodate-Schiff positive band which was coincident with enzyme activity. Compositional analyses of the microsomal enzyme focusing at pH 8.0 confirmed the presence of hexoses, hexosamines and sialic acid. Differences in carbohydrate composition might be important in determining the subcellular distribution of this enzyme.  相似文献   

9.
NAD glycohydrolase of calf spleen was solubilized with pancreatic lipase and purified approximatively 800-fold to a specific activity of 7 units/mg of protein by successive DEAE-cellulose and carboxymethyl-cellulose chromatography. The purified enzyme has a molecular weight of 24,000 and is characterized by a double band on disc gel electrophoresis. Some kinetic properties of the NAD-glycohydrolase-catalyzed hydrolsis of NAD have been examined using a titrimetric assay for enzyme activity. The reaction is subject to inhibition be excess of substrate, which disappears at high ionic strength and low pH. At a pH below 5 the kinetic displays an apparent activation by substrate. The effects of pH (4.5-9.0) on the kinetic parameters do not reveal an essential ionizable group in the catalytic process.  相似文献   

10.
NAD+ glycohydrolase activity located in the nuclear envelope was maximally solubilized by treatment with 0.1--0.2% Triton X-100. The residual activity largely represents the chromatin-associated NAD+ glycohydrolase. Under these conditions the phospholipids were extensively solubilized (over 90%) while leaving the nuclei physically stable, although the nuclear membranes were removed, as shown by electron microscopy. After Triton X-100 treatment, deoxyribonuclease I did not significantly affect the residual NAD+ glycohydrolase activity, although the DNA was completely broken down. This enzyme activity can be released from the nuclear pellet by incubation with phospholipase C. For comparative studies, the glucose 6-phosphatase activity, known to be present in the nuclear envelope, was investigated. Treatment with 0.01% Triton X-100 released 10--20% of the phospholipids, but without solubilizing either glucose 6-phosphatase or NAD+ glycohydrolase. Higher Triton X-100 concentrations (0.1--1.0%) inhibited glucose 6-phosphatase, but not NAD+ glycohydrolase activity. NAD+ glycohydrolase is apparently present in a latent form in the nuclear envelope. Glucose 6-phosphatase, However, shows no such latency.  相似文献   

11.
Subcellular fractionation of bovine thyroid tissue by differential pelleting and isopycnic gradient centrifugation in a zonal rotor indicated that NAD(+) glycohydrolase is predominantly located and rather uniformly distributed in the plasma membrane. Comparison of NAD(+) glycohydrolase activities of intact thyroid tissue slices, functional rat thyroid cells in culture (FRT(l)) and their respective homogenates indicated that most if not all of the enzyme (catalytic site) is accessible to extracellular NAD(+). The reaction product nicotinamide was predominantly recovered from the extracellular medium. The diazonium salt of sulphanilic acid, not penetrating into intact cells, was able to decrease the activity of intact thyroid tissue slices to the same extent as in the homogenate. Under the same conditions this reagent almost completely abolished NAD(+) glycohydrolase activity associated with intact thyroid cells in culture. The triazine dye Cibacron Blue F3GA and its high-M(r) derivative Blue Dextran respectively completely eliminated or caused a severe depression in the NAD(+) glycohydrolase activity of FRT(l) cells. The enzyme could be readily solubilized from bovine thyroid membranes by detergent extraction, and was further purified by gel filtration and affinity chromatography on Blue Sepharose CL-6B. The overall procedure resulted in a 1940-fold purification (specific activity 77.6mumol of nicotinamide released/h per mg). The purified enzyme displays a K(m) of 0.40mm for beta-NAD(+), a broad pH optimum around pH7.2 (0.1 m-potassium phosphate buffer) and an apparent M(r) of 120000. Nicotinamide is an inhibitor (K(i) 1.9mm) of the non-competitive type. The second reaction product ADP-ribose acts as a competitive inhibitor (K(i) 2.7mm). The purified enzyme splits beta-NAD(+), beta-NADP(+), beta-NADH and alpha-NAD(+) at rates in the relative proportions 1:0.75:<0.02:<0.02 and exhibits transglycosidase (pyridine-base exchange) activity. Anionic phospholipids such as phosphatidylinositol and phosphatidylserine inhibit the partially purified enzyme. A stimulating effect was observed upon the addition of histones.  相似文献   

12.
Bovine thyroid membranes possess both ADP ribosyltransferase and NAD glycohydrolase activities with the same Km values for NAD and the same pH optima. In intact membranes, the ADP ribosyltransferase is limited in its extent by the amount of available membrane acceptor which can be ADP-ribosylated; in membranes solubilized with lithium diiodosalicylate, an artificial acceptor, L-arginine methyl ester, can be substituted to eliminate this limitation. The product of the ADP ribosyltransferase is a mono-ADP-ribosylated acceptor whether the intact or solubilized membrane provides the enzyme activity and whether membrane or exogenous acceptor, L-arginine methyl ester, is utilized. The intact membranes and the solubilized preparation also have an enzyme activity which can release AMP from the mono-ADP-ribosylated acceptor whether formed by the action of the membrane ADP ribosyltransferase or the A promoter of cholera toxin. The NAD glycohydrolase activity appears to represent the half-reaction of the ADP ribosyltransferase, i.e. an activity measurable substituting water for a membrane acceptor or L-arginine methyl ester. Membranes from functional rat thyroid cells in culture, i.e. cells chronically stimulated by thyrotropin and unresponsive to further additions of thyrotropin, have low ADP-ribosylation but high NAD glycohydrolase activities. In contrast, membranes from nonfunctional rat thyroid cells, i.e. cells unresponsive to thyrotropin, have high ADP-ribosylation and low NAD glycohydrolase activities. NAD hydrolysis by the NAD glycohydrolase activity cannot account for the low ADP-ribosylation activity in membranes from the functioning cells, and its low level of ADP-ribosylation can be eliminated by solubilizing the membranes and substituting an artificial acceptor, L-arginine methyl ester. The ADP ribosyltransferase activity of rat thyroid cell membrane preparations can be enhanced by thyrotropin in a dose-dependent manner but not by insulin, glucagon, hydrocortisone, adrenocorticotropin, or its glycoprotein hormone analog, human chorionic gonadotropin. It is thus suggested (i) that, in analogy to cholera toxin, thyrotropin-stimulated ADP-ribosylation may be important in the regulation of the adenylate cyclase response and (ii) that the level of membrane acceptor available for ADP-ribosylation may relate both to a stable "'activated" state of the adenylate cyclase system in cells chronically stimulated with thyrotropin and/or to a desensitized state with regard to a failure of more thyrotropin to elicit additional functional responses.  相似文献   

13.
Adenine nucleotides promote dissociation of pertussis toxin subunits   总被引:11,自引:0,他引:11  
Pertussis toxin is composed of an enzymatically active A subunit and a binding component (B oligomer). Both the holotoxin and the isolated A subunit have previously been shown to exhibit NAD glycohydrolase activity although the A subunit is more active on a molar basis than the holotoxin. We have investigated the mechanism by which ATP stimulates the activity of this toxin. Since dissociation of pertussis toxin subunits would result in increased NAD glycohydrolase activity, the ability of ATP to promote release of the A subunit from the B oligomer was examined. In the presence of the zwitterionic detergent 3-(3-cholamidopropyldimethyl)-1-ammonio)-propanesulfonate, concentrations of ATP as low as 1 microM promoted subunit dissociation. The concentration of ATP required for release of the A subunit was similar to that required for stimulation of NAD glycohydrolase activity. Both ATP and ADP promoted subunit dissociation and stimulated NAD glycohydrolase activity. In contrast, AMP and adenosine did not alter NAD glycohydrolase activity or affect subunit structure. The ability of ATP to decrease the affinity of the A subunit for the B oligomer may play a role in nucleotide stimulation of pertussis toxin activity.  相似文献   

14.
ADP-Ribosylation of Highly Purified Rat Brain Mitochondria   总被引:1,自引:0,他引:1  
Highly purified synaptic and nonsynaptic mitochondria were prepared from rat brain, and their ADP-ribosyl transferase and NAD glycohydrolase activities were investigated. Data show that there is no significant difference in ADP-ribosyl transferase activity between these two types of subcellular preparations. However, NAD glycohydrolase activity appeared to be much higher in nonsynaptic mitochondria. The specific activity of both enzymes was investigated in the presence of the inhibitor nicotinamide or its analogue 3-aminobenzamide or other adenine nucleotides, such as ATP or ADP-ribose. The inhibitory effect of nicotinamide or 3-aminobenzamide on ADP-ribosyl transferase appears rather weak compared with their effect on NAD glycohydrolase activity. However, ADP-ribose and ATP appeared more effective in inhibiting ADP-ribosyl transferase. Our results provide evidence for the existence of ADP-ribosyl transferase activity in rat brain mitochondria. When NAD glycohydrolase was inhibited totally by nicotinamide, the transfer of ADP-ribose from NAD to mitochondrial proteins still occurred. The chain length determinations show that the linkage of ADP-ribose to mitochondrial proteins is oligomeric.  相似文献   

15.
Modifications at the 2'-position of the nicotinamide-ribosyl moiety influence dramatically the nature of the interactions of the modified beta-NAD+ with calf spleen NAD+ glycohydrolase (EC 3.2.2.6), an enzyme that cleaves the nicotinamide-ribose bound in NAD(P)+. Nicotinamide arabinoside adenine dinucleotide (ara-NAD+) and nicotinamide 2'-deoxy-2'-fluoroarabinoside adenine dinucleotide (araF-NAD+) are not hydrolyzed at measurable rates and are the first documented examples of reversible slow binding inhibitors of this class of enzyme. The kinetic data obtained are consistent with both slow kon and koff rate constants in the formation of an enzyme-inhibitor complex, i.e. the association rate constants are about 10(4) and 10(6) slower than diffusion rates, respectively, for araF-NAD+ and ara-NAD+, and the half-life of the complex is about 3-10 min for both analogues. The kinetic model does not account for a slow turnover of an ADP-ribosyl-enzyme intermediary complex. AraF-NAD+ is one of the most potent inhibitors described for NAD+ glycohydrolase.  相似文献   

16.
The intracellular distribution of NADPH- and NADH-dependentduroquinone reductase (NAD (P)H-DQR) from etiolated zucchinihypocotyls (Cucurbita pepo L.) was investigated. About 80% ofthis enzyme is in the supernatant fraction and is probably cytosolic.Particulate NAD (P)H-DQR was largely (42%) found in associationwith the plasma membrane and was strongly stimulated by TX100.Another 33% of NAD (P)H-DQR was associated with mitochondria,and minor fractions with the endoplasmic reticulum (8%) andother particles. All these fractions were little or not stimulatedby TX100. The distribution of detergent-activated NAD (P)H-DQRis thus distinct from microsomal NADH- and NADPH-CCR. The plasma membrane was purified from microsomal fractions bymetrizamide plus sucrose density gradient centrifugation orby PEG/dextran phase partitioning. Both types of particle preparationspeaked at a density (d) of 1.165 g cm–3 in sucrose gradientsand contained substantial TX100-sensitive NADH-DQR, TX100-stimulatedNAD (P)H-DQR, together with traces of NADH-CCR and trapped ‘soluble’enzyme (MDH, NADP-malic enzyme) activities. In isopycnic gradientsof unfractionated microsomes, however, trapped enzymes peakedat d 1.155 whereas NAD (P)H-DQR peaked at d 1.165 and GSII atd 1.170, probably revealing plasma membrane heterogeneity. Furtherevidence of heterogeneity was provided by fractionation of plasmamembrane vesicles on dextran step-gradients. Most of the trapped MDH was released to the supernatant by sonicationor treatment with 0.0125% TX100. Under these conditions mostof the NAD (P)H-DQR sedimented with the membranes. It is concludedthat NAD (P)H-DQR is bound to the inside of plasma membranevesicles, but a fraction (7 to 31%) may be ‘soluble’and sequestered within the vesicle lumen. Part of the detergent-sensitiveNADH-DQR may be externally bound and accessible to non-permeatingsubstrates. Key words: Cucurbita, NAD (P)H-quinone reductase, plasma membrane  相似文献   

17.
Adenylyl cyclase activity was low or not detectable on intact cells and in isolated plasma membranes, phagocytic vacuoles and nuclei of the two slime mold species examined. The entire activity of homogenates was sedimentable and concentrated in a light membrane fraction. When this fraction was centrifugated through sucrose density gradients the adenylyl cyclase activity sedimented differently from all other enzymes measured. The gradient fractions with the highest specific activity of adenylyl cyclase consisted mainly of small vesicles. No changes in adenylyl cyclase distribution were associated with development. The possibility that cellular slime mold adenylyl cyclase activity is associated with vesicles in vivo, as already suggested by Maeda & Gerisch [10], is discussed.  相似文献   

18.
An analog of lysophosphatidylcholine (1-dodecyl-propanediol-3-phosphocholine) which does not impair membrane-bound enzymes was used for the induction of shedding of membrane vesicles from intact calf thymocytes. Without liberation of intracellular enzymes such as lactate dehydrogenase (EC 1.1.1.27) the shedded membranes contained 15--25% of the total activity of the plasma membrane enzymes alkaline phosphatase (EC 3.1.3.1), nucleotide pyrophosphatase (EC 3.1.4.1) and gamma-glutamyl transferase (EC 2.3.2.2). Membrane-free supernatants only exhibited trace activities of these enzymes. Without further purification, the specific enzyme activities in shedded membranes were of the same order of magnitude as in purified plasma membranes prepared after nitrogen cavitation of thymocytes. Small amounts of membrane vesicles which showed a different composition could be removed without detergent. These membranes exhibited a 3-fold lower specific activity of the gamma-glutamyl transferase while that of the alkaline phosphatase and nucleotide pyrophosphatase was similar as in detergent induced membrane vesicles. Distinct differences also were found in the protein pattern. The content of total cholesterol and phospholipid in vesicles shed spontaneously or after detergent treatment was nearly identical, however, significant differences were found in the fatty acid composition of the main phospholipids. The content of polyunsaturated fatty acids (linoleic and arachidonic acid) increased in the order: spontaneously shedded membranes, detergent induced vesicles, conventional purified plasma membranes. These results are discussed in terms of the heterogeneous composition of areas of the thymocyte plasma membrane.  相似文献   

19.
The chemical synthesis of adenosine(5') [alpha-thio]diphospho(5')ribofuranosyl-nicotinamide (NAD[S]) is described. The product occurs as a pair of diastereomers with different configuration at the sulfur-bearing phosphorus atom. The diastereomers were separated by high-performance liquid chromatography and their absolute configuration was determined after chemical degradation to the ADP[alpha S] diastereomers and chromatographic comparison with enzymically synthesized ADP[alpha S] diastereomers of known absolute configuration. Additional support for this assignment is based on different rates in the phosphodiesterase-catalyzed hydrolysis. Furthermore the synthesis of [14C]NAD[S] is described. The coenzyme activity of NAD[S] in the reaction with alcohol dehydrogenase from baker's yeast and lactate dehydrogenase from pig heart is very similar to that of beta-NAD. Also, NAD and NAD[S] serve equally well as substrates for NAD glycohydrolase from calf spleen. In contrast, no reaction was detected with NAD pyrophosphorylase, and hydrolysis of the separated NAD[S] diastereomers with snake venom phosphodiesterase showed a 26-fold and a 33-fold slower reaction rate than that of NAD. Nucleotide pyrophosphatase was less sensitive to the S substitution, hydrolyzing NAD[S] 14-times slower than NAD. Poly(ADP-ribose) polymerase from Ehrlich ascites tumor cell nuclei accepted NAD[S] as a substrate but the reaction was significantly slower and approached saturation at much lower values than with NAD. Alkaline hydrolysis of the products insoluble in trichloroacetic acid yielded AMP[S] as the main derivative. It is concluded that with NAD[S] as a substrate the nuclear acceptors were nearly exclusively mono(ADP-ribosyl) ated .  相似文献   

20.
H R Kaslow  D D Lesikar 《Biochemistry》1987,26(14):4397-4402
The combination of ATP, CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate), and DTT (dithiothreitol) is known to promote the expression of the NAD glycohydrolase activity of pertussis toxin, which resides in the toxin's S1 subunit. By monitoring changes in electrophoretic mobility, we have found that ATP and CHAPS act by promoting the reduction of the disulfide bond of the S1 subunit. In addition, ATP, CHAPS, and DTT allowed sulfhydryl-alkylating reagents to inactivate the NAD glycohydrolase activity. In the presence of iodo[14C]acetate, the combination of ATP, CHAPS, and DTT increased 14C incorporation into only the S1 subunit of the toxin, indicating that alkylation of this subunit was responsible for the loss of activity. If iodoacetate is used as the alkylating reagent, alkylation can be monitored by an acidic shift in the isoelectric point of the S1 peptide. Including NAD in alkylation reactions promoted the accumulation of a form of the S1 peptide with an isoelectric point intermediate between that of native S1 and that of S1 alkylated in the absence of NAD. This result suggests that NAD interacts with one of the two cysteines of the S1 subunit. In addition, we found the pH optimum for the NAD glycohydrolase activity of pertussis toxin is 8, which may reflect the participation of a cysteine in the catalytic mechanism of the toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号