首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fungal enzyme galactose oxidase is a radical copper oxidase that catalyzes the oxidation of a broad range of primary alcohols to aldehydes. Previous mechanistic studies have revealed a large substrate deuterium kinetic isotope effect on galactose oxidase turnover whose magnitude varies systematically over a series of substituted benzyl alcohols, reflecting a change in the character of the transition state for substrate oxidation. In this work, these detailed mechanistic studies have been extended using a series of stereospecifically monodeuterated substrates, including 1-O-methyl-alpha-D-galactose as well as unsubstituted benzyl alcohol and 3- and 4-methoxy and 4-nitrobenzyl derivatives. Synthesis of all of these substrates was based on oxidation of the alpha,alpha'-dideuterated alcohol to the corresponding (2)H-labeled aldehyde, followed by asymmetric hydroboration using alpha-pinene/9-BBN reagents to form the stereoisomeric alcohols. Products from enzymatic oxidation of each of these substrates were characterized by mass spectrometry to quantitatively evaluate the substrate dependence of the stereoselectivity of the catalytic reaction. For all of these substrates, the selectivity for pro-S hydrogen abstraction was at least 95%. This selectivity appears to be a direct consequence of constraints imposed by the enzyme on the orientation of substrates bearing a branched beta-carbon. Steady state analysis of kinetic isotope effects on V/K has resolved individual contributions from primary and alpha-secondary kinetic isotope effects in the reaction, providing a test for the involvement of an electron transfer redox equilibrium in the oxidation process. Multiple isotope effect measurements utilizing simultaneous labeling of the substrate and solvent have contributed to refinement of the relation between proton transfer and hydrogen atom transfer steps in substrate oxidation.  相似文献   

2.
The intracellular galactose oxidase from Dactylium dendroides was purified to homogeneity with a 64% yield. The enzyme is a glycoprotein (7.7% neutral sugars, 1.7% aminosugars) with 72,000 Da of molecular mass. The enzyme showed nonlinear double reciprocal plots with O2 and D-galactose, suggesting cooperative binding for both substrates. The intracellular galactose oxidase catalyzes the oxidation of galactose derivatives and dihydroxyacetone but not of glycerol, glycolaldehyde, beta-hydroxipyruvate, and allyl alcohol which are substrates for the extracellular enzyme. Compared with the extracellular galactose oxidase, the intracellular enzyme showed higher carbohydrate content and sensitivity to diethyldithiocarbamate.  相似文献   

3.
An enzyme showing alkaliphilic laccase activity was purified from the culture supernatant of Myrothecium verrucaria 24G-4. The enzyme was highly stable under alkaline conditions, showed an optimum reaction pH of 9.0 for 4-aminoantipyrine/phenol coupling, and decolorized synthetic dyes under alkaline conditions. It showed structural and catalytic similarities with bilirubin oxidase, but preferably oxidized phenolic compounds. The enzyme catalyzed veratryl alcohol oxidation at pH 9.0 with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as a mediator, suggesting that the laccase mediator system functioned well under alkaline conditions.  相似文献   

4.
 The catalytic mechanism of the copper-containing enzyme galactose oxidase involves a protein radical on Tyr272, one of the equatorial copper ligands. The first step in this mechanism has been proposed to be the abstraction of a proton from the alcohol substrate by Tyr495, the axial copper ligand that is weakly co-ordinated to copper. In this study we have generated and studied the properties of a Y495F variant to test this proposal. X-ray crystallography reveals essentially no change from wild-type other than loss of the tyrosyl hydroxyl group. Visible spectroscopy indicates a significant change in the oxidised Y495F compared to wild-type with loss of a broad 810-nm peak, supporting the suggestion that this feature is due to inter-ligand charge transfer via the copper. The presence of a peak at 420 nm indicates that the Y495F variant remains capable of radical formation, a fact supported by EPR measurements. Thus the significantly reduced catalytic efficiency (1100-fold lower k cat / K m) observed for this variant is not due to an inability to generate the Tyr272 radical. By studying azide-induced pH changes, it is clear that the reduced catalytic efficiency is due mainly to the inability of Y495F to accept protons. This provides definitive evidence for the key role of Tyr495 in the initial proton abstraction step of the galactose oxidase catalytic mechanism. Received: 17 December 1996 / Accepted: 12 March 1997  相似文献   

5.
Glucoamylase and glucose oxidase fromAspergillus niger have been purified to homogeneity by chromatography on DEAE-cellulose and the purified enzymes have been used to investigate structural and antigenicity relationships. In structure, glucoamylase and glucose oxidase are glycoproteins containing 14% and 16% carbohydrate. Earlier methylation and reductive -elimination results have shown that glucoamylase has an unusual arrangement of carbohydrate residues, with 20 single mannose units and 25 di-, tri-, or tetrasaccharide chains of mannose, glucose, and galactose, all attached O-glycosidically to serine and threonine residues of the protein moiety. The antigenicity of the glucoamylase has now been found to reside predominantly in the types and arrangement of the carbohydrate chains. Glucose oxidase contains mannose, galactose, and glucosamine in the N-acetyl form in the native enzyme, but the complete structure of the carbohydrate chains has not yet been determined. The antigenicity of this enzyme does not reside in the carbohydrate units, but rather in the polypeptide chains of the two subunits of the enzyme. Glucose oxidase can be dissociated into subunits by mercaptoethanol and sodium dodecyl sulfate treatment, while glucoamylase cannot be dissociated, but undergoes only an unfolding of the polypeptide chain under these conditions. The subunits of glucose oxidase do not react with the anti-glucose oxidase antibodies, but the unfolded molecule and peptide fragments produced from glucoamylase by cyanogen bromide cleavage do react with antiglucoamylase antibodies.  相似文献   

6.
Redox activation of galactose oxidase: thin-layer electrochemical study   总被引:1,自引:0,他引:1  
The redox activation of galactose oxidase by various oxidants is characterized by using a unique thin-layer electrochemical cell. Activation is shown to be strictly a redox process and can be rapidly accomplished by using ferricyanide, cobalt terpyridine or tetracyanomonophenanthroline ferrate, and a control electrode to control solution potential. This oxidation is a one-electron process and does not result in modified galactose oxidase which exhibits enhanced activity. On the contrary, this oxidation is required for activity. The solution potential dependence of activity is independent of which of these mediator-titrants is used, the concentration used, and which of various substrates is used in the determination. The substrates used were acetol, dihydroxyacetone, glycerin, 2-propyn-1-ol, allyl alcohol, 2-butyne-1,4-diol, furfuryl alcohol, benzyl alcohol, 4-pyridylcarbinol, galactose, and stachyose. The E1/2 and n values obtained are 0.40 +/- 0.005 V vs. SHE and 0.9 +/- 0.1 electron at pH 7.3. E1/2 is defined as the potential at which half the maximal enzymatic activity is observed and probably reflects the E0' of the enzymic group involved in activation. A model is proposed in which activation occurs during turnover due to the redox buffering (by oxidants) of an enzymic Cu(II)/Cu(I) state which has a higher E0' than in resting galactose oxidase. The pH dependence of E1/2 is 60 mV/pH unit in the pH range 6.0-8.0. The data suggest that the deprotonation of an amino acid residue facilitates the one-electron oxidation (activation) of galactose oxidase.  相似文献   

7.
Cytokinin oxidase: Biochemical features and physiological significance   总被引:10,自引:0,他引:10  
The catabolism of cytokinin in plant tissues appears to be due, in large part, to the activity of a specific enzyme, cytokinin oxidase. This enzyme catalyses the oxidation of cytokinin substrates bearing unsaturated isoprenoid side chains, using molecular oxygen as the oxidant. In general, substrate specificity is highly conserved and cytokinin substrates bearing saturated or cyclic side chains do not serve as substrates for most cytokinin oxidases tested to date. Despite variation in molecular properties of the enzyme from a number of higher plants, oxygen is always required for the reaction. Cytokinin oxidases from several sources have been shown to be glycosylated. Cytokinin oxidase activity appears to be universally inhibited by cytokinin-active urea derivatives. Auxin has been reported to act as an allosteric regulator which increases activity of the enzyme.
Cytokinin oxidase activity is subject to tight regulation. Levels of the enzyme are controlled by a mechanism sensitive to cytokinin supply. The up-regulation of cytokinin oxidase expression in response to exogenous application of cytokinin suggests that the metabolic fate of exogenously applied cytokinins may not accurately mimic that of the endogenous compounds.
Cytokinin oxidase is believed to be a copper-containing amine oxidase (EC 1.4.3.6). Considerable evidence strongly supports a common mechanism for amine oxidases. It is possible that advances in understanding of other amine oxidases could be extrapolated to increase our understanding of cytokinin oxidase at the molecular level. This is discussed with reference to what is currently known about the catalytic mechanism of the enzyme. The possibility of pyrroloquinoline quinone, or a closely related compound, as a redox cofactor of cytokinin oxidase is considered, as are the implications of the glycosylated nature of the enzyme for its regulation and compartmentalisation within the cell.  相似文献   

8.
A method is described for manufacturing crude alcohol oxidase (EC 1.1.3.13) preparations which are suitable for application in colorimetric alcohol assays. The procedure involves a one-step removal of catalase activity from a partially purified preparation of alcohol oxidase from the yeast Hansenula polymorpha via dialysis against 3-amino-1,2,4-triazole and hydrogen peroxide. Thus, the irreversible inactivation of more than 90% of the catalase present was achieved, which is prerequisite for the use of alcohol oxidase preparations in colorimetric alcohol assays via peroxidase-mediated oxidation of dyes. This type of assay was shown to be rapid, accurate and sensitive. The influence of the relative concentrations of the various assay constituents such as alcohol oxidase, catalase and peroxidase is discussed. It is concluded that this colorimetric alcohol assay is particularly suitable for the determination of ethanol in fermentation broths, both in qualitative and in quantitative tests.  相似文献   

9.
Galactose oxidase is a copper metalloenzyme containing a novel protein-derived redox cofactor in its active site, formed by cross-linking two residues, Cys228 and Tyr272. Previous studies have shown that formation of the tyrosyl-cysteine (Tyr-Cys) cofactor is a self-processing step requiring only copper and dioxygen. We have investigated the biogenesis of cofactor-containing galactose oxidase from pregalactose oxidase lacking the Tyr-Cys cross-link but having a fully processed N-terminal sequence, using both Cu(I) and Cu(II). Mature galactose oxidase forms rapidly following exposure of a pregalactose oxidase-Cu(I) complex to dioxygen (t(1/2) = 3.9s at pH7). In contrast, when Cu(II) is used in place of Cu(I) the maturation process requires several hours (t(1/2) = 5.1 h). EDTA prevents reaction of pregalactose oxidase with Cu(II) but does not interfere with the Cu(I)-dependent biogenesis reaction. The yield of cross-link corresponds to the amount of copper added, although a fraction of the pregalactose oxidase protein is unable to undergo this cross-linking reaction. The latter component, which may have an altered conformation, does not interfere with analysis of cofactor biogenesis at low copper loading. The biogenesis product has been quantitatively characterized, and mechanistic studies have been developed for the Cu(I)-dependent reaction, which forms oxidized, mature galactose oxidase and requires two molecules of O2. Transient kinetics studies of the biogenesis reaction have revealed a pH sensitivity that appears to reflect ionization of a protein group (pKa = 7.3) at intermediate pH resulting in a rate acceleration and protonation of an early oxygenated intermediate at lower pH competing with commitment to cofactor formation. These spectroscopic, kinetic, and biochemical results lead to new insights into the biogenesis mechanism.  相似文献   

10.
Expression of recombinant galactose oxidase by Pichia pastoris   总被引:5,自引:0,他引:5  
Galactose oxidase catalyzes the oxidation of a variety of primary alcohols, producing hydrogen peroxide as a product. Among hexose sugars, the enzyme exhibits a high degree of specificity for the C6-hydroxyl of galactose and its derivatives, underlying a number of important bioanalytical applications. Galactose oxidase cDNA has been cloned for expression in Pichia pastoris both as the full-length native sequence and as a fusion with the glucoamylase signal peptide. Expression of the full-length native sequence results in a mixture of partly processed and mature galactose oxidase. In contrast, the fusion construct directs efficient secretion of correctly processed galactose oxidase in high-density, methanol-induced fermentation. Culture conditions (including induction temperature and pH) have been optimized to improve the quality and yield (500 mg/L) of recombinant enzyme. Lowering the temperature from 30 to 25 degrees C during the methanol induction phase results in a fourfold increase in yield. A simple two-step purification and one-step activation produce highly active galactose oxidase suitable for a wide range of biomedical and bioanalytical applications.  相似文献   

11.
Galactose oxidase is a fungal enzyme which is known to oxidize the C-6 hydroxymethyl of galactose and galactosamine to an aldehyde group. It has been widely used in glycoconjugate research, for example in the labeling of asialoglycoproteins. We have developed a simple affinity purification for galactose oxidase using melibiose-polyacrylamide. This affinity procedure was used to purify the enzyme from ammonium sulfate precipitates of culture filtrates of Dactylium dendroides. The material containing proteases and other contaminants is eluted in the buffer wash. The galactose oxidase is then specifically eluted from the column with buffer containing 0.1 M D-fucose or D-galactose. Using this procedure, the enzyme was also purified from commercial samples of galactose oxidase which contain high proteolytic activity.  相似文献   

12.
Although previous research has focused on phenol removal efficiencies using polyphenol oxidase in nonimmobilized and immobilized forms, there has been little consideration of the use of polyphenol oxidase in a biotransformation system for the production of catechols. In this study, polyphenol oxidase was successfully immobilized on various synthetic membranes and used to convert phenolic substrates to catechol products. A neural network model was developed and used to model the rates of substrate utilization and catechol production for both nonimmobilized and immobilized polyphenol oxidase. The results indicate that the biotransformation of the phenols to their corresponding catechols was strongly influenced by the immobilization support, resulting in differing yields of catechols. Hydrophilic membranes were found to be the most suitable immobilization supports for catechol production. The successful biocatalytic production of 3-methylcatechol, 4-methylcatechol, catechol, and 4-chlorocatechol is demonstrated.  相似文献   

13.
Evidence for the involvement of Cu(III) in an enzymic reaction (that catalyzed by D-galactose oxidase) is reported. Superoxide dismutase inhibits the rate of the D-galactose oxidase catalyzed reaction and causes a small increase in the EPR signal due to Cu(II). Both ferricyanide and superoxide activate the enzyme (frequently 4 fold or greater) and cause a decrease (to essentially zero in some cases) in the intensity of the EPR signal. These and other results suggest that in its catalytic cycle the enzyme oscillates between Cu(I) and Cu(III) with superoxide bound to a Cu(II) state being only a fleeting intermediate. The Cu(III) enzyme is apparently the oxidant which converts the primary alcohol function of galactose to an aldehyde.  相似文献   

14.
The steady-state kinetics of four redox reactions catalyzed by galactose oxidase have been determined. The alcohol substrate used in each case was galactose; the four oxidant substrates used were O2, IrCl62?, porphyrexide, and Fe(CN)63?. With the exception of the last reagent, saturation behavior is exhibited by all substrates. Double reciprocal plots of rate data obtained varying one substrate at various concentrations of the other are intersecting for all pairs that exhibited saturation behavior. Thus, these reactions are kinetically sequential processes involving single central complexes. These complexes involve enzyme, galactose, and one molecule of oxidant, whether or not the oxidant is a one- or two-electron acceptor. This result indicates that for one-electron oxidants, an enzyme-alcohol-derived radical species may exist as a transient prior to the reaction of the second electron equivalent of oxidant. A similar substrate
transient is postulated in the reaction involving O2. The inhibition by H2O2 has also been studied in detail. H2O2 apparently binds to the enzyme at two sites. The nature of alcohol and O2 binding to the enzyme Cu(II) is discussed in light of these kinetic results.  相似文献   

15.
吴茵  陈敏  郭倩 《菌物学报》2016,35(6):705-713
分离纯化刺芹侧耳Pleurotus eryngii芳基醇氧化酶,并探究其酶学性质。通过硫酸铵盐沉、DEAE-Sepharose Fast Flow弱阴离子交换层析、Sephacryl S-200 High Resolution凝胶过滤层析和Source 15Q强阴离子交换层析,得到纯化的单一酶。经肽指纹图谱鉴定,确定其为芳基醇氧化酶,酶活回收率25.5%,纯化倍数38.2。结合SDS-PAGE和IEF-PAGE分析,确定其分子量和等电点分别为70kDa和4.2。以藜芦醇为底物,该酶最适反应pH为6.0,最适反应温度为70℃,金属离子Zn2+、Fe2+和Cu2+对芳基醇氧化酶的活性抑制作用明显,KmVmax分别为0.921mmol/L和80U/mg。  相似文献   

16.
J J Driscoll  D J Kosman 《Biochemistry》1987,26(12):3429-3436
Solvent and solvent proton dependent steps involved in the mechanism of the enzyme galactose oxidase have been examined. The deuterium kinetic solvent isotope effect (KSIE) on the velocity of the galactose oxidase catalyzed oxidation of methyl beta-galactopyranoside by O2 was measured. Examination of the thermodynamic activation parameters for the reaction indicated that the isotope effect was attributable to a slightly less favorable delta H value, consistent with a KSIE on proton transfer. A detailed kinetic analysis was performed, examining the effect of D2O on the rate of reaction over the pH range 4.8-8.0. Both pL-rate profiles exhibited bell-shaped curves. Substitution of D2O as solvent shifted the pKes values for the enzymic central complex: pKes1 from 6.30 to 6.80 and pKes2 from 7.16 to 7.35. Analysis of the observed shifts in dissociation constants was performed with regard to potential hydrogenic sites. pKes1 can be attributed to a histidine imidazole, while pKes2 is tentatively assigned to a Cu2+-bound water molecule. A proton inventory was performed (KSIE = +1.55); the plot of kcat vs. mole fraction D2O was linear, indicating the existence of a single solvent-derived proton involved in a galactose oxidase rate-determining step (or steps). The pH dependence of CN- inhibition was also examined. The Ki-pH profile indicated that a group ionization, with pKa = 7.17, modulated CN- inhibition; Ki was at a minimum when this group was in the protonated state. The inhibition profile followed the alkaline limit of the pH-rate profile for the enzymic reaction, suggesting that the group displaced by CN- was also deprotonating above pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The photometric method is suggested for ethanol analysis by means of purified alcohol oxidase isolated from a wild strain of methylotrophic yeast Hansenula polymorpha. Three different chromogenic systems for peroxidative oxidation together with alcohol oxidase reaction have been used. For the first time the intact cells of the catalase-negative mutant as a source of alcohol oxidase are employed in the photometric alcohol assay. The prospects for application of the latter method for practical purposes are discussed.  相似文献   

18.
《FEBS letters》1994,350(2-3):219-222
The exposure of GM1 molecular species present in the native ganglioside, carrying C18:1 or C20:1 long-chain bases (LCB), to Dactylium dendroides galactose oxidase was studied. When native GM1 (49.3% C18:1 and 50.7% C20:1 LCB, respectively), was inserted in dipalmitoylphosphatidylcholine vesicles and partially oxidized (10%), the proportion of C18:1 and C20:1 species in the oxidized GM1 was 59.6% and 40.4%, respectively, suggesting a preferential action of the enzyme on the shorter species. The Vmax of the enzyme was higher on C18:1 GM1 than on C20:1 GM1. The molecular species were affected without any preference after partial (10%) oxidation of GM1 incorporated in egg phosphatidylcholine vesicles or in micellar form. These data indicate that the exposure of the terminal galactose moiety of GM1 ganglioside to galactose oxidase is affected by the ganglioside ceramide composition as well as the phospholipid environment, that presumably determine the distribution (molecular dispersion, segregation) of the ganglioside within the membrane.  相似文献   

19.
Treatment of galactose oxidase with catalytic amounts of horseradish peroxidase results in increases in both enzyme activity and Cu(II)-associated absorbance. This reaction requires O2 and is reversed upon removal of O2 or peroxidase. o,o-Dityrosine is detected in amino acid hydrolysates of peroxidase-treated galactose oxidase as a ninhydrin peak. Furthermore, even native enzyme contains this species as detected by fluorescence measurements. Peroxidase treatment increases the amount of dityrosine present. The dityrosine forms an intramolecular crosslink, the first such crosslink found in a nonstructural protein. The peroxidase-catalyzed formation of the dityrosine and putative precursor radical(s) is thought to involve a tyrosyl ligand to the Cu(II) in galactose oxidase. Such a radical may be involved in the activation observed.  相似文献   

20.
The genetic variability of one of the liver isozymes of aldehyde oxidase (AOX-B2 or AOX-2) and the stomach isozyme of alcohol dehydrogenase (ADH-C2) has been examined among strains of mice. Evidence is presented for a fourth allele of Aox-2 and a third allele of Adh-3 . The hybrid allozyme pattern for mouse liver AOX was consistent with a dimeric subunit structure for this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号