首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
High levels of manganese (Mn) exposure decrease striatal medium spiny neuron (MSN) dendritic length and spine density, but the mechanism(s) are not known. The Huntingtin (HTT) gene has been functionally linked to cortical brain‐derived neurotrophic factor (BDNF) support of striatal MSNs via phosphorylation at serine 421. In Huntington's disease, pathogenic CAG repeat expansions of HTT decrease synthesis and disrupt transport of cortical–striatal BDNF, which may contribute to disease, and Mn is a putative environmental modifier of Huntington's disease pathology. Thus, we tested the hypothesis that changes in MSN dendritic morphology Mn due to exposure are associated with decreased BDNF levels and alterations in Htt protein. We report that BDNF levels are decreased in the striatum of Mn‐exposed non‐human primates and in the cerebral cortex and striatum of mice exposed to Mn. Furthermore, proBDNF and mature BDNF concentrations in primary cortical and hippocampal neuron cultures were decreased by exposure to Mn confirming the in vivo findings. Mn exposure decreased serine 421 phosphorylation of Htt in cortical and hippocampal neurons and increased total Htt levels. These data strongly support the hypothesis that Mn‐exposure‐related MSN pathology is associated with decreased BDNF trophic support via alterations in Htt.

  相似文献   


3.
《Current biology : CB》2021,31(24):5473-5486.e6
  1. Download : Download high-res image (270KB)
  2. Download : Download full-size image
  相似文献   

4.
Chen JH  Liu SZ  Teng GX 《生理学报》1999,51(4):449-453
应用胞内记录和标记技术,观察了猫皮质第Ⅱ感觉区内脏大神经代表区的神经元对电刺激内脏大神经反应诱发反应及形态特征。结果表明,在251个记录单位中,有109个为内脏伤害性感受神经元,其诱发反应分为兴奋性、抑制性及混合性三类。在形式上ISPS及EPSP-IPSP序列反应较多。对其中21个神经元用神经生物素进行细胞内电泳标记,显示细胞的形态特点是胞体较小,分布于皮质Ⅱ、Ⅲ、Ⅴ层,其中兴奋性和神经元形态多为  相似文献   

5.
Phosphodiesterase (PDE) 10A is highly expressed in medium spiny neurons of the striatum, at the confluence of the corticostriatal glutamatergic and the midbrain dopaminergic pathways, both believed to be involved in the physiopathology of schizophrenia. There is a growing body of evidence suggesting that targeting PDE10A may be beneficial for the treatment of positive symptoms in schizophrenia. The aim of the present study was to investigate how PDE10A inhibition modulates mesolimbic dopaminergic neurotransmission. We found that the selective PDE10A inhibitor, MP-10, blocked d -amphetamine-induced hyperactivity as well as d -amphetamine-induced dopamine efflux in the nucleus accumbens in a dose-dependent manner. We further investigated the mechanism by which PDE10A inhibition affects dopaminergic neurotransmission. We report that MP-10 potentiated the effect of a high but not a low dose of d -amphetamine on the mean firing rate of dopaminergic neurons recorded from the ventral tegmental area. Similarly, the effect of a high, but not a low dose of d -amphetamine, was completely reversed by the selective D1 antagonist, SCH23390. These data suggest that the D1-regulated feedback control of midbrain dopamine neurons is a critical pathway involved in the modulation of the response of mesolimbic dopamine neurons to d -amphetamine by PDE10A inhibition.  相似文献   

6.
7.
Mature striatal medium size spiny neurons express the dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32), but little is known about the mechanisms regulating its levels, or the specification of fully differentiated neuronal subtypes. Cell extrinsic molecules that increase DARPP-32 mRNA and/or protein levels include retinoic acid (RA), brain-derived neurotrophic factor, and estrogen (E2). We now demonstrate that RA regulates DARPP-32 mRNA and protein in primary striatal neuronal cultures. Furthermore, DARPP-32 induction by RA in vitro requires phosphatidylinositide 3-kinase, but is independent of tropomyosin-related kinase B, cyclin-dependent kinase 5, and protein kinase B. Using pharmacologic inhibitors of various isoforms of protein kinase C (PKC), we also demonstrate that DARPP-32 induction by RA in vitro is dependent on PKC zeta (PKCζ). Thus, the signal transduction pathways mediated by RA are very different than those mediating DARPP-32 induction by brain-derived neurotrophic factor. These data support the presence of multiple signal transduction pathways mediating expression of DARPP-32 in vitro , including a novel, important pathway via which phosphatidylinositide 3-kinase regulates the contribution of PKCζ.  相似文献   

8.
9.
In the dopamine-depleted striatum, extracellular signal-regulated kinase (ERK) signaling is implicated in the development of l -DOPA-induced dyskinesia. To gain insights on its role in this disorder, we examined the effects of l -DOPA on the state of phosphorylation of ERK and downstream target proteins in striatopallidal and striatonigral medium spiny neurons (MSNs). For this purpose, we employed mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoters for the dopamine D2 receptor ( Drd2 -EGFP mice) or the dopamine D1 receptor ( Drd1a -EGFP mice), which are expressed in striatopallidal and striatonigral MSNs, respectively. In 6-hydroxydopamine-lesioned Drd2 -EGFP mice, l -DOPA increased the phosphorylation of ERK, mitogen- and stress-activated kinase 1 and histone H3, selectively in EGFP-negative MSNs. Conversely, a complete co-localization between EGFP and these phosphoproteins was observed in Drd1a -EGFP mice. The effect of l -DOPA was prevented by blockade of dopamine D1 receptors. The same pattern of activation of ERK signaling was observed in dyskinetic mice, after repeated administration of l -DOPA. Our results demonstrate that in the dopamine-depleted striatum, l -DOPA activates ERK signaling specifically in striatonigral MSNs. This regulation may result in ERK-dependent changes in striatal plasticity leading to dyskinesia.  相似文献   

10.
11.
Human embryonic stem (hES) cells can be guided to differentiate into ventral midbrain-type neural precursor (NP) cells that proliferate in vitro by specific mitogens. We investigated the potential of these NP cells derived from hES cells (hES-NP) for the large-scale generation of human dopamine (DA) neurons for functional analyses and therapeutic applications. To address this, hES-NP cells were expanded in vitro for 1.5 months with six passages, and their proliferation and differentiation properties determined over the NP passages. Interestingly, the total hES-NP cell number was increased by > 2 × 104-folds over the in vitro period without alteration of phenotypic gene expression. They also sustained their differentiation capacity toward neuronal cells, exhibiting in vitro pre-synaptic DA neuronal functionality. Furthermore, the hES-NP cells can be cryopreserved without losing their proliferative and developmental potential. Upon transplantation into a Parkinson's disease rat model, the multi-passaged hES-NP cells survived, integrated into the host striatum, and differentiated toward the neuronal cells expressing DA phenotypes. A significant reduction in the amphetamine-induced rotation score of Parkinson's disease rats was observed by the cell transplantation. Taken together, these findings indicate that hES-NP cell expansion is exploitable for a large-scale generation of experimental and transplantable DA neurons of human-origin.  相似文献   

12.
A single subcutaneous dose of 10 mEq/kg LiCl gives rise to an increase in the cerebral cortex level of myo-inositol-1-P (I1P) that closely follows cortical lithium levels and, at maximum, is 40-fold above the control value. Kidney and testis show smaller increases in I1P level following LiCl administration. The I1P level is still sixfold greater than that of untreated rat cortex 72 h later. In cortex, parallel increases also occur in myo-inositol-4-P (I4P) and myo-inositol 1,2-cyclic-P (cI1,2P), whereas myo-inositol-5-P (I5P) remains unchanged. The cortical increases in I1P and I4P levels are partially reversed by administering 150 mg/kg of atropine 22 h after the LiCl, treatment that does not affect cI1,2P. When doses of LiCl from 2 to 17 mEq/kg are given, the cerebral cortex levels of I1P and myo-inositol, measured 24 h later, are found to reach a plateau at about 9 mEq/kg of LiCl, whereas cortical lithium levels continued to increase with greater LiCl doses. Levels of all three of the brain phosphoinositides are unchanged by the 10 mEq/kg LiCl dose, as is the uptake of 32Pi into these lipids. Chronic dietary administration of LiCl for 22 days showed that the effects of lithium on I1P and myo-inositol levels persist for that period. Over the course of the chronic administration of the lithium, levels of I1P, myo-inositol, and of lithium in cortex remained significantly correlated. We believe that these increases in inositol phosphates result from endogenous phosphoinositide metabolism in cerebral cortex and that lithium is capable of modulating that metabolism by reducing cellular myo-inositol levels. The size of the effect is a function of both lithium dose and the degree of stimulation of receptor-linked phosphoinositide metabolism. This property of lithium may explain part of its ability to moderate the symptoms of mania. Our chronic study suggests that prolonged administration of LiCl does not result in compensatory changes in myo-inositol-1-P synthase or myo-inositol-1-phosphatase.  相似文献   

13.
Abstract: Oxidant-mediated damage is suspected to be involved in the pathogenesis of several neurodegenerative disorders. Iron promotes conversion of hydrogen peroxide to hydroxyl radical and, thus, may contribute to oxidant stress. We measured iron and its transport protein transferrin in caudate, putamen, globus pallidus, substantia nigra, and frontal cortex of subjects with Alzheimer's disease (n = 14) and Parkinson's disease (n = 14), and in younger adult (n = 8) and elderly (n = 8) normal controls. Although there were no differences between control groups with regard to concentrations of iron and transferrin, iron was significantly increased ( p < 0.05) in Alzheimer's disease globus pallidus and frontal cortex and Parkinson's disease globus pallidus, and transferrin was significantly increased in Alzheimer's disease frontal cortex, compared with elderly controls. The transferrin/iron ratio, a measure of iron mobilization capacity, was decreased in globus pallidus and caudate in both disorders. Regional transferrin and iron concentrations were generally more highly correlated (Pearson's correlation coefficient) in elderly controls than in Alzheimer's and Parkinson's disease. The altered relationship between iron and transferrin provides further evidence that a disturbance in iron metabolism may be involved in both disorders.  相似文献   

14.
Premature centromere division (PCD) represents a loss of control over the sequential separation and segregation of chromosome centromeres. Although first described in aging women, PCD on the X chromosome (PCD,X) is markedly elevated in peripheral blood lymphocytes of individuals suffering from Alzheimer disease (AD). The present study evaluated PCD,X, using a fluorescent in situ hybridization method, in interphase nuclei of frontal cerebral cortex neurons from sporadic AD patients and age-matched controls. The average frequency of PCD,X in AD patients (8.60 ± 1.20%) was almost three times higher ( p  < 0.01) than in the control group (2.96 ± 1.20). However, consistent with previous studies, no mitotic cells were found in neurons in either AD or control brain, suggesting an intrinsic inability of post-mitotic neurons to divide. In view of the fact that it has been well-documented that neurons in AD can re-enter into the cell division cycle, the findings presented here of increased PCD advance the hypothesis that deregulation of the cell cycle may contribute to neuronal degeneration and subsequent cognitive deficits in AD.  相似文献   

15.
Protein bound and free 3-nitrotyrosine (3NT) levels are elevated in neurodegenerative diseases and have been used as evidence for peroxynitrite generation. Intrastriatal injection of free 3NT causes dopaminergic neuron injury and represents a new mouse model of Parkinson's disease (PD). We are investigating the nature of free 3NT neurotoxicity. In primary ventral midbrain cultures, free 3NT damaged dopaminergic neurons, while adjacent non-dopaminergic neurons were unaffected. Combined treatment with free 3NT and subtoxic amounts of dopamine caused extensive death of non-dopaminergic forebrain neurons in culture. Free 3NT alone directly inhibited mitochondrial complex I, decreased ATP, sensitized neurons to mitochondrial depolarization, and increased superoxide production. Subtoxic concentrations of rotenone (instead of free 3NT) caused similar results. Additionally, free 3NT and dopamine combined increased extraneuronal hydrogen peroxide and decreased intraneuronal glutathione levels more than dopamine alone. Oxidative and bioenergetic processes have been proposed to contribute to neurodegeneration in PD. As free 3NT is a compound that is increased in PD, damages dopamine neurons in vivo and in vitro and has detrimental effects on neuronal bioenergetics, it is possible that free 3NT is an endogenous contributing factor to neuronal loss, in addition to being a marker of oxidative and nitrative processes.  相似文献   

16.
Shu J  Chen ZF 《生理学报》1998,50(1):28-36
我们在神经移植的天空过程中观察到被移植的中枢神经元能从蛛网膜下腔迁入脊髓的大脑皮层。这一新观察为脊髓和脑浅层大范围神经元缺损时的无损伤神经元引入和大范围去神经区域的神经再支配提供了一种颇具吸引力的河能性。实验动物选用Wistar和S.D.大鼠,将含有胚胎中枢单胺或精氨酸血管加压素(AVP)能神经元的细胞悬浮液或组织块移植到被横断的脊髓或未被脊髓和脑的蛛网膜下腔内。动物分别在移植的同时切断脊髓;在移  相似文献   

17.
The GPR88 orphan G protein-coupled receptor is expressed throughout the striatum, being preferentially localised in medium spiny neurons. It is also present in lower densities in frontal cortex and thalamus. Rare mutations in humans suggest a role in cognition and motor function, while common variants are associated with psychosis. Here we evaluate the influence of genetic deletion of GPR88 upon performance in translational tasks interrogating motivation, reward evaluation and cognitive function. In an automated radial arm maze ‘N-back’ working memory task, Gpr88 KO mice showed impaired correct responding, suggesting a role for GPR88 receptors in working memory circuitry. Associative learning performance was similar to wild-type controls in a touchscreen task but performance was impaired at the reversal learning stage, suggesting cognitive inflexibility. Gpr88 KO mice showed higher breakpoints, reduced latencies and lengthened session time in a progressive ratio task consistent with enhanced motivation. Simultaneously, locomotor hyperactivity was apparent in this task, supporting previous findings of actions of GPR88 in a cortico-striatal-thalamic motor loop. Evidence for a role of GPR88 in reward processing was demonstrated in a touchscreen-based equivalent of the Iowa gambling task. Although both Gpr88 KO and wild-type mice showed a preference for an optimum contingency choice, Gpr88 KO mice selected more risky choices at the expense of more advantageous lower risk options. Together these novel data suggest that striatal GPR88 receptors influence activity in a range of procedures integrated by prefrontal, orbitofrontal and anterior cingulate cortico-striatal-thalamic loops leading to altered cognitive, motivational and reward evaluation processes.  相似文献   

18.
Riluzole is neuroprotective in patients with amyotrophic lateral sclerosis and may also protect dopamine (DA) neurons in Parkinson's disease. We examined the neuroprotective potential of riluzole on DA neurons using primary rat mesencephalic cultures and human dopaminergic neuroblastoma SH-SY5Y cells. Riluzole (up to 10 microM:) alone affected neither the survival of DA neurons in primary cultures nor the growth of SH-SY5Y cells after up to 72 h. Riluzole (1-10 microM:) dose-dependently reduced DA cell loss caused by exposure to MPP(+) in both types of cultures. These protective effects were accompanied by a dose-dependent decrease of intracellular ATP depletion caused by MPP(+) (30-300 microM:) in SH-SY5Y cells without affecting intracellular net NADH content, suggesting a reduction of cellular ATP consumption rather than normalization of mitochondrial ATP production. Riluzole (1-10 microM:) also attenuated oxidative injury in both cell types induced by exposure to L-DOPA and 6-hydroxydopamine, respectively. Consistent with its antioxidative effects, riluzole reduced lipid peroxidation induced by Fe(3+) and L-DOPA in primary mesencephalic cultures. Riluzole (10 microM) did not alter high-affinity uptake of either DA or MPP(+). However, in the same cell systems, riluzole induced neuronal and glial cell death with concentrations higher than those needed for maximal protective effects (> or =100 microM:). These data demonstrate that riluzole has protective effects on DA neurons in vitro against neuronal injuries induced by (a) impairment of cellular energy metabolism and/or (b) oxidative stress. These results provide further impetus to explore the neuroprotective potential of riluzole in Parkinson's disease.  相似文献   

19.
The present study characterized the receptor‐dependent regulation of dendrite formation of noradrenaline (NA) and dopamine (DA) in cultured neurons obtained from embryonic day 16 rat cerebral cortex. Morphological diversity of cortical dendrites was analyzed on various features: dendrite initiation, dendrite outgrowth, and dendrite branching. Using a combination of immunocytochemical markers of dendrites and GABAergic neurons, we focused on the dendrite morphology of non‐GABAergic neurons. Our results showed that (1) NA inhibited the dendrite branching, (2) β adrenergic receptor (β‐AR) agonist inhibited the dendrite initiation, while promoted the dendrite outgrowth, (3) β1‐AR and β2‐AR were present in all the cultured neurons, and both agonists inhibited the dendrite initiation, while only β1‐AR agonist induced the dendrite branching; (4) DA inhibited the dendrite outgrowth, (5) D1 receptor agonist inhibited the dendrite initiation, while promoted the dendrite branching. In conclusion, this study compared the effects of NA, DA and their receptors and showed that NA and DA regulate different features on the dendrite formation of non‐GABAergic cortical neurons, depending on the receptors. © 2012 Wiley Periodicals, Inc. Develop Neurobiol 73: 370–383, 2013  相似文献   

20.
The present study describes evaluation of epigenetic regulation by a small molecule as the therapeutic potential for treatment of Huntington’s disease (HD). We identified 5-allyloxy-2-(pyrrolidin-1-yl)quinoline (APQ) as a novel SETDB1/ESET inhibitor using a combined in silico and in vitro cell based screening system. APQ reduced SETDB1 activity and H3K9me3 levels in a HD cell line model. In particular, not only APQ reduced H3K9me3 levels in the striatum but it also improved motor function and neuropathological symptoms such as neuronal size and activity in HD transgenic (YAC128) mice with minimal toxicity. Using H3K9me3-ChIP and genome-wide sequencing, we also confirmed that APQ modulates H3K9me3-landscaped epigenomes in YAC128 mice. These data provide that APQ, a novel small molecule SETDB1 inhibitor, coordinates H3K9me-dependent heterochromatin remodelling and can be an epigenetic drug for treating HD, leading with hope in clinical trials of HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号