首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial cohort of mammalian gametes is established by the proliferation of primordial germ cells in the early embryo. Primordial germ cells first appear in extraembyronic tissues and subsequently migrate to the developing gonad. Soon after they arrive in the gonad, the germ cells cease dividing and undertake sexually dimorphic patterns of development. Male germ cells arrest mitotically, while female germ cells directly enter meiotic prophase I. These sex-specific differentiation events are imposed upon a group of sex-common differentiation events that are shared by XX and XY germ cells. We have studied the appearance of GCNA1, a postmigratory sex-common germ cell marker, in cultures of premigratory germ cells to investigate how this differentiation program is regulated. Cultures in which proliferation was either inhibited or stimulated displayed a similar extent of differentiation as controls, suggesting that some differentiation events are the result of a cell-intrinsic program and are independent of cell proliferation. We also found that GCNA1 expression was accelerated by agents which promote DNA demethylation or histone acetylation. These results suggest that genomic demethylation of proliferative phase primordial germ cells is a mechanism by which germ cell maturation is coordinated.  相似文献   

2.
Drosophila origin recognition complex (ORC) localizes to defined positions on chromosomes, and in follicle cells the chorion gene amplification loci are well-studied examples. However, the mechanism of specific localization is not known. We have studied the DNA binding of DmORC to investigate the cis-requirements for DmORC:DNA interaction. DmORC displays at best six-fold differences in the relative affinities to DNA from the third chorion locus and to random fragments in vitro, and chemical probing and DNase1 protection experiments did not identify a discrete binding site for DmORC on any of these fragments. The intrinsic DNA-binding specificity of DmORC is therefore insufficient to target DmORC to origins of replication in vivo. However, the topological state of the DNA significantly influences the affinity of DmORC to DNA. We found that the affinity of DmORC for negatively supercoiled DNA is about 30-fold higher than for either relaxed or linear DNA. These data provide biochemical evidence for the notion that origin specification in metazoa likely involves mechanisms other than simple replicator-initiator interactions and that in vivo other proteins must determine ORC's localization.  相似文献   

3.
DNA methylation (5-methylcytosine) in mammalian genomes predominantly occurs at CpG dinucleotides, is maintained by DNA methyltransferase1 (Dnmt1), and is essential for embryo viability. The plant genome also has 5-methylcytosine at CpG dinucleotides, which is maintained by METHYLTRANSFERASE1 (MET1), a homolog of Dnmt1. In addition, plants have DNA methylation at CpNpG and CpNpN sites, maintained, in part, by the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase. Here, we show that Arabidopsis thaliana embryos with loss-of-function mutations in MET1 and CMT3 develop improperly, display altered planes and numbers of cell division, and have reduced viability. Genes that specify embryo cell identity are misexpressed, and auxin hormone gradients are not properly formed in abnormal met1 embryos. Thus, DNA methylation is critical for the regulation of plant embryogenesis and for seed viability.  相似文献   

4.
Viral infection of the heart is a common but underappreciated cause of heart failure. Viruses can cause direct cardiac damage by lysing infected cardiomyocytes. Inflammatory immune responses that limit viral replication can also indirectly cause damage during infection, making regulatory factors that fine-tune these responses particularly important. Identifying and understanding these factors that regulate cardiac immune responses during infection will be essential for developing targeted treatments for virus-associated heart failure. Our laboratory has discovered Brain Expressed X-linked protein 1 (BEX1) as a novel stress-regulated pro-inflammatory factor in the heart. Here we report that BEX1 plays a cardioprotective role in the heart during viral infection. Specifically, we adopted genetic gain- and loss-of-function strategies to modulate BEX1 expression in the heart in the context of coxsackievirus B3 (CVB3)-induced cardiomyopathy and found that BEX1 limits viral replication in cardiomyocytes. Interestingly, despite the greater viral load observed in mice lacking BEX1, inflammatory immune cell recruitment in the mouse heart was profoundly impaired in the absence of BEX1. Overall, the absence of BEX1 accelerated CVB3-driven heart failure and pathologic heart remodeling. This result suggests that limiting inflammatory cell recruitment has detrimental consequences for the heart during viral infections. Conversely, transgenic mice overexpressing BEX1 in cardiomyocytes revealed the efficacy of BEX1 for counteracting viral replication in the heart in vivo. We also found that BEX1 retains its antiviral role in isolated cells. Indeed, BEX1 was necessary and sufficient to counteract viral replication in both isolated primary cardiomyocytes and mouse embryonic fibroblasts suggesting a broader applicability of BEX1 as antiviral agent that extended to viruses other than CVB3, including Influenza A and Sendai virus. Mechanistically, BEX1 regulated interferon beta (IFN-β) expression in infected cells. Overall, our study suggests a multifaceted role of BEX1 in the cardiac antiviral immune response.  相似文献   

5.
DNA methylation in ciliates: implications in differentiation processes.   总被引:3,自引:0,他引:3  
Much experimental evidence on the role of DNA methylation in gene expression has been reported. Here we review reports on DNA methylation in ciliated protozoa, emphasizing its implications in cell differentiation processes. Both types of methylated bases (adenine and cytosine) can be found in macronuclear DNA. The division cycle and conjugation have been studied with regard to adenine methylation, and several different functions have been assigned to the methylation changes detected in these processes. Cytosine methylation changes were analyzed during stomatogenesis of Paramecium and encystment of Colpoda inflata. A comparative analysis with other similar microbial eukaryotic differentiation processes is carried out.  相似文献   

6.
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.  相似文献   

7.
DNA accessibility: a determinant of mammalian cell differentiation?   总被引:1,自引:0,他引:1  
Rats bearing intracerebral 9L tumors were whole-brain irradiated with 1250 to 5000 rad, and the in situ DNA repair kinetics of the undifferentiated tumor cells and terminally differentiated cerebellar neurons were examined by alkaline sucrose gradient sedimentation in zonal rotors with gradient reorienting capability. Biphasic repair kinetics were observed for both tumor cells and cerebellar neurons. Quantitation and analysis of the slow phase of the repair process suggest that the dividing tumor cell genome is completely accessible to the enzymatic repair machinery, while it is possible that the genome of the permanently nondividing neuron may contain a region that is inaccessible to this repair machinery.  相似文献   

8.
9.
Cell-penetrating peptide mediated uptake of labels appears to follow an equilibrium-like process. However, this assumption is only valid if the peptides are stabile. Hence, in this study we investigate intracellular and extracellular peptide degradation kinetics of two fluorescein labeled cell-penetrating peptides, namely MAP and penetratin, in Chinese hamster ovarian cells. The degradation and uptake kinetics were assessed by RP-HPLC equipped with a fluorescence detector. We show that MAP and penetratin are rapidly degraded both extracellularly and intracellularly giving rise to several degradation products. Kinetics indicates that intracellularly, the peptides exist in (at least) two distinct pools: one that is immediately degraded and one that is stabile. Moreover, the degradation could be decreased by treating the peptides with BSA and phenanthroline and the uptake was significantly reduced by cytochalasin B, chloroquine and energy depletion. The results indicate that the extracellular degradation determines the intracellular peptide concentration in this system and therefore the stability of cell-penetrating peptides needs to be evaluated.  相似文献   

10.
Cell-penetrating peptide mediated uptake of labels appears to follow an equilibrium-like process. However, this assumption is only valid if the peptides are stabile. Hence, in this study we investigate intracellular and extracellular peptide degradation kinetics of two fluorescein labeled cell-penetrating peptides, namely MAP and penetratin, in Chinese hamster ovarian cells. The degradation and uptake kinetics were assessed by RP-HPLC equipped with a fluorescence detector. We show that MAP and penetratin are rapidly degraded both extracellularly and intracellularly giving rise to several degradation products. Kinetics indicates that intracellularly, the peptides exist in (at least) two distinct pools: one that is immediately degraded and one that is stabile. Moreover, the degradation could be decreased by treating the peptides with BSA and phenanthroline and the uptake was significantly reduced by cytochalasin B, chloroquine and energy depletion. The results indicate that the extracellular degradation determines the intracellular peptide concentration in this system and therefore the stability of cell-penetrating peptides needs to be evaluated.  相似文献   

11.
The origin of the signal for keratinocyte differentiation is still unknown. Here, we show that Ca(2+)- and density-induced translocation of E-cadherin, but not P-cadherin, is accompanied by induction of differentiation-specific proteins in cultured keratinocytes. Antibodies that artificially cluster cell-surface E-cadherin in low extracellular Ca(2+) also induce differentiation-specific proteins, implicating E-cadherin as a determinant of keratinocyte differentiation in vitro.  相似文献   

12.
13.
Primary cell cultures are in general resistant to the transforming effect of a single oncogene, a finding considered consistent with the multistage theory of carcinogenesis. In the present studies, we examined whether cellular age, differentiation stage, and/or tissue origin of primary cells plays a role in determining their response to v-src transformation. To study the role of cellular age, rat mammary fibroblasts were isolated from a 50-day-old female rat and infected with a recombinant retrovirus carrying a v-src gene after 2, 7, 14, 21, and 28 days of continuous growth. To determine whether cellular differentiation is important, fibroblasts were isolated from embryos at 12 and 16 days of gestation, from newborns, and from a 30-day-old rat and similarly infected. Finally, the role of primary-cell histogenesis was assessed by infecting primary cultures of fibroblasts isolated from the mammary gland, dermis, and lungs of a mature rat. When compared to 3Y1 cells, all preparations of primary cultures exhibited considerable resistance to v-src transformation. However, whereas primary cells isolated from different tissues responded similarly to the transforming effect of the oncogene, major differences were observed when cells were transduced at different stages of their in vitro life span. v-src was capable of inducing formation of foci and growth in soft agar in early-passage cells but failed to do so in primary cultures infected after 14 days of continuous passaging. Similarly, both the number of foci and the number of colonies in soft agar decreased with tissue donor age. The differential response of young and senescing cells could not be explained by mutations in v-src provirus, by differences in functional v-src expression, or by growth stimulation or suppression via paracrine mechanisms. Furthermore, v-src cooperated with an immortalizing gene, like simian virus 40 large T, polyomavirus large T, E6 and E7 of human papillomavirus, or an activated p53 mutant, to induce anchorage-independent growth of primary cultures but failed to do so with cytoplasmic transforming genes, like v-abl, v-ras, or v-raf, which did not confer indefinite division potential. These studies indicate that cellular aging is a critical determinant of primary-cell resistance to v-src transformation. It is suggested that v-src requires a nuclear auxiliary function for transformation which is present in early-passage cells, particularly when these cells are derived from embryonic tissue, but is lost as cells approach replicative senescence. This auxiliary function is provided by nuclear oncogenes but not cytoplasmic transforming genes.  相似文献   

14.
15.
The topology of a SNARE complex bridging two docked vesicles could act as a mechanical couple to do work on the lipid bilayer resulting in fusion. To test this, we prepared a series of modified SNARE proteins and determined their effects on SNARE-dependent membrane fusion. When two helix-breaking proline residues are introduced into the juxtamembrane region of VAMP, there is little or no effect on fusion, and the same change in syntaxin 1A only reduced the extent and rate of fusion by half. The insertion of a flexible linker between the transmembrane domain and the conserved coiled-coil domain only moderately affected fusion; however, fusion efficiency systematically decreased with increasing length of the linker. Together, these results rule out a requirement for helical continuity and suggest that distance is a critical factor for membrane fusion.  相似文献   

16.
Salzberg AA  Dedon PC 《Biochemistry》2000,39(25):7605-7612
Calicheamicin is a hydrophobic enediyne antibiotic that binds noncovalently to DNA and causes sequence-selective oxidation of deoxyribose. While the drug makes several base contacts along the minor groove, the diversity of binding-site sequences and the effects of DNA conformation on calicheamicin-induced DNA cleavage suggest that sequence recognition per se is not the primary determinant of target selection. We now present evidence that calicheamicin bends its DNA targets. Using a gel mobility assay, we observed that polymers of oligonucleotide constructs containing AGGA and ACAA binding sites for calicheamicin did not possess intrinsic curvature. Binding of calicheamicin epsilon, the aromatized form of the parent calicheamicin gamma(1)(I), to oligonucleotide constructs containing binding sites in phase with the helical repeat caused a shift to smaller circle sizes in T4 ligase-mediated circle formation assays, with a much smaller shift observed with constructs containing out-of-phase binding sites. It was also observed that binding of calicheamicin epsilon to a 273 bp construct with phased binding sites caused an increase in the molar cyclization factor, J, from 8 x 10(-8) to 9 x 10(-6) M. These results are consistent with DNA bending as part of an induced-fit mechanism of DNA target recognition and with the hypothesis that the preferred targets of calicheamicin, the 3' ends of oligopurine tracts, are characterized by unique conformational properties.  相似文献   

17.
18.
Triadin is involved in the regulation of cardiac excitation-contraction coupling. However, the extent of its contribution to the regulation of sarcoplasmic reticulum (SR) Ca release remains unclear, because overexpression of triadin in single-transgenic mice was associated with the downregulation of its homologous protein, junctin. In the present study, this problem was circumvented by cross-breeding of mice with heart-directed overexpression of triadin and junctin (JxT). This resulted in a stable approximately threefold expression of total triadin but unchanged junctin protein. Transgenic mice exhibited cardiac hypertrophy and structural abnormalities of myofibrils. Measurement of cardiac function by echocardiography and edge detection in myocytes revealed an impaired relaxation in JxT mice. The stimulation of beta-adrenergic receptors resulted in a depressed contractility and an impaired relaxation in catheterized hearts and myocytes of JxT mice. The use of a maximum stimulation frequency (5 Hz) was associated with both a lower shortening and relengthening in isolated myocytes of JxT mice. The contractile effects in JxT myocytes were paralleled by similar changes of the intracellular Ca concentration ([Ca](i)) peak amplitude and Ca transient decay kinetics at basal conditions, under administration of isoproterenol, and with high-frequency stimulation. Finally, we found a higher caffeine-induced [Ca](i) peak amplitude in JxT myocytes. Our data show that the stable expression of triadin, independent of junctin expression, resulted in cardiac hypertrophy, prolonged basal relaxation, a depressed response to beta-adrenergic agonists, and altered Ca transients. Thus the maintenance of triadin expression is essential for normal SR Ca cycling and contractile function.  相似文献   

19.
HPLC analysis of nucleosides is important for determining total DNA methylation in plants and can be used to help characterise epigenetic changes during stress, growth and development. This is of particular interest for in vitro plant cultures as they are highly susceptible to genetic change. HPLC methodologies have been optimised for mammalian and microbial DNA, but not for plants. This study examines critical methodological factors in the HPLC analysis of plant DNA methylation using in vitro cultures of Ribes ciliatum. HPLC revealed that complete removal of RNA from plant DNA extractions is difficult using RNase (A and T1) digestions and LiCl precipitation. This suggests that base analysis should be avoided when using these RNA removal techniques, as bases from residual RNA fragments will inflate peak areas for DNA-derived bases. Nucleoside or nucleotide analysis is therefore recommended as a more suitable option as RNA and DNA constituents can be readily separated. DNA digestion was also a critical factor as methylation was under-estimated following incomplete nuclease digestion and over-estimated following incomplete phosphatase digestion. The units of enzyme required for complete DNA digestion was optimised and found to be 20-200 times less for nuclease P1 and 15 times less for alkaline phosphatase as compared with previous protocols. Digestion performance was conveniently monitored using marker peaks that indicate incomplete digestion products. This study identifies critical components of HPLC analysis and offers a comprehensive guide for the stringent analysis of DNA methylation in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号