首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
Apoplastic transport barriers in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix) were isolated enzymatically. Following chemical degradation (monomerization, derivatization), the amounts of aliphatic and aromatic suberin monomers were analysed quantitatively by gas chromatography and mass spectrometry. In corn, suberin was determined for isolated endodermal (ECW) and rhizo-hypodermal (RHCW) cell walls. In rice, the strong lignification of the central cylinder (CC), did not allow the isolation of endodermal cell walls. Similarly, exodermal walls could not be separated from the rhizodermal and sclerenchyma cell layers. Suberin analyses of ECW and RHCW of rice, thus, refer to either the entire CC or to the entire outer part of the root (OPR), the latter lacking the inner cortical cell layer. In both species, aromatic suberin was mainly composed of coumaric and ferulic acids. Aliphatic suberin monomers released from rice and corn belonged to five substance classes: primary fatty acids, primary alcohols, diacids, omega-hydroxy fatty acids, and 2-hydroxy fatty acids, with omega-hydroxy fatty acids being the most prominent substance class. Qualitative composition of aliphatic suberin of rice was different from that of corn; (i) it was much less diverse, and (ii) besides monomers with chain lengths of C(16), a second maximum of C(28) was evident. In corn, C(24) monomers represented the most prominent class of chain lengths. When suberin quantities were related to surface areas of the respective tissues of interest (hypodermis and/or exodermis and endodermis), exodermal cell walls of rice contained, on average, six-times more aliphatic suberin than those of corn. In endodermal cell walls, amounts were 34 times greater in rice than in corn. Significantly higher amounts of suberin detected in the apoplastic barriers of rice corresponded with a substantially lower root hydraulic conductivity (Lp(r)) compared with corn, when water flow was driven by hydrostatic pressure gradients across the apoplast. As the OPR of rice is highly porous and permeable to water, it is argued that this holds true only for the endodermis. The results imply that some caution is required when discussing the role of suberin in terms of an efficient transport barrier for water. The simple view that only the quantity of suberin present is important, may not hold. A more detailed consideration of both the chemical nature of suberins and of the microstructure of deposits is required, i.e. how suberins impregnate wall pores.  相似文献   

3.
Suberin is a lipid-phenolic biopolymer present in the cell walls of specialized plant cell types. Due to its insolubility and impermeability, suberin forms an important barrier to the transport of water, ions and gases in certain plant tissues, such as the root endodermis, the periderm and the bundle sheath of C4 plants. In sugarcane forage, supplied in tropical countries as complement to animal livestock, the cell walls of most tissues that build up the stem are progressively suberized. Suberin biochemical features and significant content in the stem make this biopolymer an extra factor influencing sugarcane biomass recalcitrance, decreasing digestibility. Here, we summarize the latest data on the biosynthesis, transport and deposition of suberin in plants, with a special focus on sugarcane forage, and discuss how this biopolymer affects biomass digestibility.  相似文献   

4.
Suberin is found in a variety of tissues, such as root endoderms and periderms, storage tuber periderms, tree cork layer, and seed coats. It acts as a hydrophobic barrier to control the movement of water, gases, and solutes as well as an antimicrobial barrier. Suberin consists of polymerized phenolics, glycerol, and a variety of fatty acid derivatives, including primary fatty alcohols. We have conducted an in-depth analysis of the distribution of the C18:0 to C22:0 fatty alcohols in Arabidopsis (Arabidopsis thaliana) roots and found that only 20% are part of the root suberin polymer, together representing about 5% of its aliphatic monomer composition, while the remaining 80% are found in the nonpolymeric (soluble) fraction. Down-regulation of Arabidopsis FATTY ACYL REDUCTASE1 (FAR1), FAR4, and FAR5, which collectively produce the fatty alcohols found in suberin, reduced their levels by 70% to 80% in (1) the polymeric and nonpolymeric fractions from roots of tissue culture-grown plants, (2) the suberin-associated root waxes from 7-week-old soil-grown plants, and (3) the seed coat suberin polymer. By contrast, the other main monomers of suberin were not altered, indicating that reduced levels of fatty alcohols did not influence the suberin polymerization process. Nevertheless, the 75% reduction in total fatty alcohol and diol loads in the seed coat resulted in increased permeability to tetrazolium salts and a higher sensitivity to abscisic acid. These results suggest that fatty alcohols and diols play an important role in determining the functional properties of the seed coat suberin barrier.Suberin is a cell wall-linked polymeric barrier that plays a critical role in the survival of plants by protecting them against various biotic and abiotic stresses. It primarily acts as a hydrophobic barrier to control the movement of water, gases, and solutes, but also contributes to the strength of the cell wall (Ranathunge et al., 2011). Suberin is deposited at the inner face of primary cell walls next to the plasma membrane (Kolattukudy, 1980; Franke and Schreiber, 2007). It is typically found as lamellae (alternating dark and light bands when viewed by transmission electron microscopy) in the endodermis, exodermis, and peridermis of roots, as well as in the peridermis of underground storage tubers (Bernards, 2002). Suberin is also found in shoot periderms of trees (i.e. cork layer) and in seed coats (Molina et al., 2006, 2008) and is deposited in response to wounding (Kolattukudy, 2001).Suberin is a polymer consisting of aliphatics (fatty acid derivatives), phenolics, and glycerol. The predominant aliphatic components of suberin are ω-hydroxy fatty acids, α,ω-dicarboxylic acids, very-long-chain fatty acids, and primary fatty alcohols, while the major phenolic components are p-hydroxycinnamic acids, especially ferulic acid (Kolatukudy, 1980; Bernards et al., 1995; Pollard et al., 2008; Ranathunge et al., 2011). In the periderm of underground storage organs, suberin is found in association with waxes, which are isolated either by extensive extraction in solvent (Soliday et al., 1979; Serra et al., 2009) or by brief immersion of tubers in chloroform (Espelie et al., 1980). These suberin-associated waxes consist of linear aliphatics (e.g. alkanes, fatty acids, and fatty alcohols), which are similar to cuticular wax components of aerial tissues but generally of shorter chain lengths (Espelie et al., 1980). In waxes extracted from 3-week-old wounded potato (Solanum tuberosum) periderms, alkyl ferulates (i.e. ferulic acid linked by an ester bond to a C16:0–C32:0 fatty alcohol) represent up to 60% of the total wax load (Schreiber et al., 2005). Root waxes are also found in 6- to 7-week-old mature taproots of Arabidopsis (Arabidopsis thaliana) with a fully developed periderm (Li et al., 2007; Kosma et al., 2012). They are enriched in alkyl hydroxycinnamates (AHCs) made of C18:0 to C22:0 fatty alcohols esterified with coumaric, caffeic, or ferulic acids (Kosma et al., 2012). The monomer composition (in terms of major chemical species and chain length) of both suberin and suberin-associated waxes varies considerably between plant species, tissues, and developmental stages. Aliphatic suberin and suberin-associated waxes are considered the major contributors to the diffusion resistance of suberized cell walls to radial transport of water and solutes (Soliday et al., 1979; Espelie et al., 1980; Zimmermann et al., 2000; Ranathunge and Schreiber, 2011). The organization of suberin components in the lamellated structure as well as how waxes may be associated with the polymer is a matter of debate (Graça and Santos, 2007).Primary fatty alcohols are long-chain hydrocarbons containing a single hydroxyl group at the terminal position. They are ubiquitously detected as components of the suberin polymer, representing 1% to 10% of the total monomer mass recovered after transesterification (Holloway, 1983; Bernards, 2002; Pollard et al., 2008). Primary fatty alcohols are also typical components of suberin-associated waxes, where they can be found either in free form or linked by an ester bond with a hydroxycinnamic acid (i.e. as AHCs; Soliday et al., 1979; Espelie et al., 1980; Bernards and Lewis 1992; Li et al., 2007; Kosma et al., 2012). In mechanically isolated endodermis of soybean (Glycine max) roots, fatty alcohols represent about 1.5% and 0.2% of the total aliphatics found in suberin-associated waxes and suberin polymer, respectively (Thomas et al., 2007). In onion (Allium cepa) root exodermis, fatty alcohols (C14:0–C28:0) account for 7% to 12% of the soluble fraction, while the suberin fraction contains only C22:0 fatty alcohol, which makes up 3% of the suberin fraction across all exodermal maturation zones (Meyer et al., 2011). In suberizing potato periderms 7 d post wounding, C16:0 to C28:0 fatty alcohols represent about 10% and 18% of the total aliphatics in the insoluble poly(aliphatic) domain (suberin polymer) and in the soluble (nonpolymeric) fraction, respectively (Yang and Bernards, 2006). A similar study on native periderms from 21-d-stored potato (Serra et al., 2009) reported that fatty alcohols represent about 20% of the total aliphatic components found in the suberin polyester, while unlinked fatty alcohols and alkyl ferulates accounted for about 23% and 44% of the total aliphatics in the soluble waxes.In Arabidopsis, C18:0, C20:0, and C22:0 fatty alcohols account for slightly less than 3% of the polymerized aliphatics in roots of soil-grown plants (Domergue et al., 2010), but as much as 36% [w/w] of the soluble wax load (Li et al., 2007). Arabidopsis fatty acyl reductases FAR1 (At5g22500), FAR4 (At3g44540), and FAR5 (At3g44550) generate, respectively, the C22:0, C20:0, and C18:0 fatty alcohol present in the suberin of root, seed coat, and wounded leaf tissues (Domergue et al., 2010). These three enzymes also generate the C18:0 to C22:0 fatty alcohol components that make up AHCs of root waxes (Kosma et al., 2012). Although one particular chain length of primary alcohol was reduced in each far single mutant line (C18:0-OH, C20:0-OH, and C22:0-OH in far5, far4, and far1, respectively), the total fatty alcohol load of the suberin polymer and its composition were only slightly affected and mutant plants had no obvious developmental or physiological defects (Domergue et al., 2010). In this study, we report on the distribution of primary fatty alcohols in the soluble (nonpolymeric) and insoluble (suberin polymer) fractions from mature roots of Arabidopsis. We report that far double and triple mutants have highly reduced fatty alcohol levels, in a chain length-specific manner, in both fractions as well as in the seed coat suberin polymer. The significant reductions in total fatty alcohol and diol levels in the seed coat of these mutants lead to increased permeability and higher sensitivity to abscisic acid (ABA), bringing to light insights on the roles of fatty alcohols and diols in determining functional properties of suberin.  相似文献   

5.
Suberin and waxes embedded in the suberin polymer are key compounds in the control of transpiration in the tuber periderm of potato (Solanum tuberosum). Suberin is a cell‐wall biopolymer with aliphatic and aromatic domains. The aliphatic suberin consists of a fatty acid polyester with esterified ferulic acid, which is thought to play an important role in cross‐linking to the aromatic domain. In potato, ferulic acid esters are also the main components of periderm wax. How these ferulate esters contribute to the periderm water barrier remains unknown. Here we report on a potato gene encoding a fatty ω‐hydroxyacid/fatty alcohol hydroxycinnamoyl transferase (FHT), and study its molecular and physiological relevance in the tuber periderm by means of a reverse genetic approach. In FHT RNAi periderm, the suberin and its associated wax contained much smaller amounts of ferulate esters, in agreement with the in vitro ability of the FHT enzyme to conjugate ferulic acid with ω‐hydroxyacid and fatty alcohols. FHT down‐regulation did not affect the typical suberin lamellar ultrastructure but had significant effects on the anatomy, sealing properties and maturation of the periderm. The tuber skin became thicker and russeted, water loss was greatly increased, and maturation was prevented. FHT deficiency also induced accumulation of the hydroxycinnamic acid amides feruloyl and caffeoyl putrescine in the periderm. We discuss these results in relation to the role attributed to ferulates in suberin molecular architecture and periderm impermeability.  相似文献   

6.
Oxygenated fatty acids such as ricinoleic acid and vernolic acid can serve in the industry as synthons for the synthesis of a wide range of chemicals and polymers traditionally produced by chemical conversion of petroleum derivatives. Oxygenated fatty acids can also be useful to synthesize specialty chemicals such as cosmetics and aromas. There is thus a strong interest in producing these fatty acids in seed oils (triacylglycerols) of crop species. In the last 15 years or so, much effort has been devoted to isolate key genes encoding proteins involved in the synthesis of oxygenated fatty acids and to express them in the seeds of the model plant Arabidopsis thaliana or crop species. An often overlooked but rich source of enzymes catalyzing the synthesis of oxygenated fatty acids and their esterification to glycerol is the biosynthetic pathways of the plant lipid polyesters cutin and suberin. These protective polymers found in specific tissues of all higher plants are composed of a wide variety of oxygenated fatty acids, many of which have not been reported in seed oils (e.g. saturated ω-hydroxy fatty acids and α,ω-diacids). The purpose of this mini-review is to give an overview of the recent advances in the biosynthesis of cutin and suberin and discuss their potential utility in producing specific oxygenated fatty acids for specialty chemicals. Special emphasis is given to the role played by specific acyltransferases and P450 fatty acid oxidases. The use of plant surfaces as possible sinks for the accumulation of high value-added lipids is also highlighted.  相似文献   

7.
Suberin, a cell specific, wall-associated biopolymer, is formed during normal plant growth and development as well as in response to stress conditions such as wounding. It is characterized by the deposition of both a poly(phenolic) domain (SPPD) in the cell wall and a poly(aliphatic) domain (SPAD) thought to be deposited between the cell wall and plasma membrane. Although the monomeric components that comprise the SPPD and SPAD are well known, the biosynthesis and deposition of suberin is poorly understood. Using wound healing potato tubers as a model system, we have tracked the flux of carbon into the aliphatic monomers of the SPAD in a time course fashion. From these analyses, we demonstrate that newly formed fatty acids undergo one of two main metabolic fates during wound-induced suberization: (1) desaturation followed by oxidation to form the 18:1 ω-hydroxy and dioic acids characteristic of potato suberin, and (2) elongation to very long chain fatty acids (C20 to C28), associated with reduction to 1-alkanols, decarboxylation to n-alkanes and minor amounts of hydroxylation. The partitioning of carbon between these two metabolic fates illustrates metabolic regulation during wound healing, and provides insight into the organization of fatty acid metabolism.Key Words: suberin, potato, Solanum tuberosum, carbon flux analysis, abiotic stress  相似文献   

8.
Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP‐binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP‐RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C28 and C30 fatty acids or ω‐OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier.  相似文献   

9.
Terrestrial plants produce extracellular aliphatic biopolyesters that modify cell walls of specific tissues. Epidermal cells synthesize cutin, a polyester of glycerol and modified fatty acids that constitutes the framework of the cuticle that covers aerial plant surfaces. Suberin is a related lipid polyester that is deposited on the cell walls of certain tissues, including the root endodermis and the periderm of tubers, tree bark and roots. These lipid polymers are highly variable in composition among plant species, and often differ among tissues within a single species. Here, we describe a detailed protocol to study the monomer composition of cutin in Arabidopsis thaliana leaves by sodium methoxide (NaOMe)-catalyzed depolymerisation, derivatization, and subsequent gas chromatography-mass spectrometry (GC/MS) analysis. This method can be used to investigate the monomers of insoluble polyesters isolated from whole delipidated plant tissues bearing either cutin or suberin. The method can by applied not only to characterize the composition of lipid polymers in species not previously analyzed, but also as an analytical tool in forward and reverse genetic approaches to assess candidate gene function.  相似文献   

10.
Suberin composition of various plants including Arabidopsis (Arabidopsis thaliana) has shown the presence of very long chain fatty acid derivatives C20 in addition to the C16 and C18 series. Phylogenetic studies and plant genome mining have led to the identification of putative aliphatic hydroxylases belonging to the CYP86B subfamily of cytochrome P450 monooxygenases. In Arabidopsis, this subfamily is represented by CYP86B1 and CYP86B2, which share about 45% identity with CYP86A1, a fatty acid ω-hydroxylase implicated in root suberin monomer synthesis. Here, we show that CYP86B1 is located to the endoplasmic reticulum and is highly expressed in roots. Indeed, CYP86B1 promoter-driven β-glucuronidase expression indicated strong reporter activities at known sites of suberin production such as the endodermis. These observations, together with the fact that proteins of the CYP86B type are widespread among plant species, suggested a role of CYP86B1 in suberin biogenesis. To investigate the involvement of CYP86B1 in suberin biogenesis, we characterized an allelic series of cyp86B1 mutants of which two strong alleles were knockouts and two weak ones were RNA interference-silenced lines. These root aliphatic plant hydroxylase lines had a root and a seed coat aliphatic polyester composition in which C22- and C24-hydroxyacids and α,ω-dicarboxylic acids were strongly reduced. However, these changes did not affect seed coat permeability and ion content in leaves. The presumed precursors, C22 and C24 fatty acids, accumulated in the suberin polyester. These results demonstrate that CYP86B1 is a very long chain fatty acid hydroxylase specifically involved in polyester monomer biosynthesis during the course of plant development.  相似文献   

11.
Suberin and cutin are fatty acid- and glycerol-based plant polymers that act as pathogen barriers and function in the control of water and solute transport. However, despite important physiological roles, their biosynthetic pathways, including the acyl transfer reactions, remain hypothetical. We report the characterization of two suberin mutants (gpat5-1 and gpat5-2) of Arabidopsis thaliana GPAT5, encoding a protein with acyl-CoA:glycerol-3-phosphate acyltransferase activity. RT-PCR and beta-glucuronidase-promoter fusion analyses demonstrated GPAT5 expression in seed coat, root, hypocotyl, and anther. The gpat5 plants showed a 50% decrease in aliphatic suberin in young roots and produced seed coats with a severalfold reduction in very long chain dicarboxylic acid and omega-hydroxy fatty acids typical of suberin but no change in the composition or content of membrane or storage glycerolipids or surface waxes. Consistent with their altered suberin, seed coats of gpat5 mutants had a steep increase in permeability to tetrazolium salts compared with wild-type seed coats. Furthermore, the germination rate of gpat5 seeds under high salt was reduced, and gpat5 seedlings had lower tolerance to salt stress. These results provide evidence for a critical role of GPAT5 in polyester biogenesis in seed coats and roots and for the importance of lipid polymer structures in the normal function of these organs.  相似文献   

12.
13.
14.
Plant cell walls are dramatically affected by suberin deposition, becoming an impermeable barrier to water and pathogens. Suberin is a complex layered heteropolymer that comprises both a poly(aliphatic) and a poly(aromatic) lignin-like domain. Current structural models for suberin attribute the crosslinking of aliphatic and aromatic domains within the typical lamellar ultrastructure of the polymer to esterified ferulate. BAHD feruloyl transferases involved in suberin biosynthesis have been recently characterized in Arabidopsis and potato (Solanum tuberosum). In defective mutants, suberin, even lacks most of the esterified ferulate, but maintains the typical lamellar ultrastructure. However, suberized tissues display increased water permeability, in spite of exhibiting a similar lipid load to wild type. Therefore, the role of ferulate in suberin needs to be reconsidered. Moreover, silencing the feruloyl transferase in potato turns the typical smooth skin of cv. Desirée into a rough scabbed skin distinctive of Russet varieties and impairs the normal skin maturation that confers resistance to skinning. Concomitantly to these changes, the skin of silenced potatoes shows an altered profile of soluble phenolics with the emergence of conjugated polyamines.Key words: BAHD feruloyl acyltransferases, ferulate, periderm, potato tuber skin, suberin, suberized tissues, waxRecently published reverse genetic studies in Arabidopsis and potato identified two orthologous genes that encode a BAHD feruloyl transferase acting on aliphatics and showed that deficiency in these enzymes produces a decrease in suberin-associated ferulic acid. These results, here discussed, signify an important advance in suberin biochemistry and ultrastructure, providing a valuable new insight into the organization of the suberized tissues and their role in the control of water vapour loss.  相似文献   

15.
16.
The fibers of the green lint mutant of cotton (Gossypium hirsutum L.) contain large amounts of wax and are suberized. More than 96% of the bifunctional aliphatic suberin monomers ([alpha],[omega]-alkanedioic acids and [omega]-hydroxyalkanoic acids) have chain lengths of C22 and C24 in green cotton fiber suberin. In fibers grown in the presence of S-ethyl-N,N-dipropylthiocarbamate (EPTC), a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases, the aliphatic suberin monomers were shortened to chain lengths of C16 and C18. Whereas the amounts of most suberin monomers were not negatively affected by the inhibitor treatment, the amounts of [alpha],[omega]-alkanedioic acids and of glycerol were reduced by more than 80%. Analysis in the transmission electron microscope showed a reduction in suberin content after EPTC treatment. The suberin layers were discontinuous and consisted of fewer lamellae than in the controls. A small proportion (up to 22%) of the electron-translucent suberin lamellae were thinner after EPTC treatment, probably because of the shortening of the aliphatic suberin monomers. A larger proportion of the electron-translucent lamellae were thicker than the lamellae in the controls. Possible explanations for this observation are discussed.  相似文献   

17.
Oxidases,peroxidases and hydrogen peroxide: The suberin connection   总被引:1,自引:0,他引:1  
Suberin is a biopolymer present in some plant cell walls that modifies their biophysical properties. It contains both poly(phenolic) and poly(aliphatic) domains that are unique and distinct in both their chemical composition and tissue and sub-cellular location. The biosynthesis of the suberin poly(phenolic) domain is hypothesized to follow a peroxidase-mediated oxidative coupling process. In order for this to work, however, there has to be a peroxidase located at the site of suberin poly(phenolic) domain assembly, as well as a source of hydrogen peroxide to enable its function. This review focuses on the involvement of peroxidases in the macromolecular assembly of the poly(phenolic) domain of suberized tissues, with particular attention to the process in solanaceous plants, (where it has been most intensively studied), and addresses the question of the origin of the hydrogen peroxide essential to it.  相似文献   

18.
19.
Suberin is a cell wall lipid polyester found in the cork cells of the periderm offering protection against dehydration and pathogens. Its biosynthesis and assembly, as well as its contribution to the sealing properties of the periderm, are still poorly understood. Here, we report on the isolation of the coding sequence CYP86A33 and the molecular and physiological function of this gene in potato (Solanum tuberosum) tuber periderm. CYP86A33 was down-regulated in potato plants by RNA interference-mediated silencing. Periderm from CYP86A33-silenced plants revealed a 60% decrease in its aliphatic suberin load and greatly reduced levels of C18:1 ω-hydroxyacid (approximately 70%) and α,ω-diacid (approximately 90%) monomers in comparison with wild type. Moreover, the glycerol esterified to suberin was reduced by 60% in the silenced plants. The typical regular ultrastructure of suberin, consisting of dark and light lamellae, disappeared and the thickness of the suberin layer was clearly reduced. In addition, the water permeability of the periderm isolated from CYP86A33-silenced lines was 3.5 times higher than that of the wild type. Thus, our data provide convincing evidence for the involvement of ω-functional fatty acids in establishing suberin structure and function.Periderm, the boundary tissue that replaces the epidermis in the secondary organs of plants, provides efficient protection against dehydration, UV radiation, and pathogens (Esau, 1965). Periderm is regularly found in the bark of woody plants, but herbaceous plants may also form a well-developed periderm in roots, tubers, and the oldest portions of stem. The periderm has been widely studied in potato (Solanum tuberosum) tubers because of the latter''s great agronomic significance (Schmidt and Schönherr, 1982; Vogt et al., 1983; Lulai and Freeman, 2001; Sabba and Lulai, 2002). Shrinkage and flaccidity occur in tubers if the protection afforded by the periderm against water loss is compromised (Lulai et al., 2006). Suberin and waxes embedded into the suberin matrix are considered essential for periderm imperviousness (Franke and Schreiber, 2007). Chemically, suberin is a complex lipid polymer consisting of a fatty acid-derived domain (aliphatic suberin) cross-linked by ester bonds to a polyaromatic lignin-like domain (aromatic suberin; Kolattukudy, 2001; Bernards, 2002; Franke and Schreiber, 2007). Aliphatic suberin has been widely analyzed in potato periderm (Kolattukudy and Agrawal, 1974; Graça and Pereira, 2000; Schreiber et al., 2005). The main monomers released from potato aliphatic suberin are a mixture of ω-hydroxyacids and α,ω-diacids with chain lengths ranging from C16 to C28 (mainly C18), together with glycerol. Small amounts of monofunctional fatty acids, alcohols, and ferulic acid are also released. Waxes are complex mixtures of lipids extractable with chloroform that in potato periderm consist mostly of linear very-long-chain aliphatics up to C32 (Schreiber et al., 2005). Suberin is deposited in the cell wall as a continuous deposit or secondary cell wall that overlays the polysaccharide primary cell wall from the inside (Esau, 1965). These suberin deposits appear under the transmission electron microscope (TEM) as regularly alternating opaque and translucent lamellae (Schmidt and Schönherr, 1982). Although several molecular models for suberin have been proposed (Kolattukudy, 1980; Bernards, 2002; Graça and Santos, 2007), how the suberin and wax components are organized in the lamellated suberin secondary cell wall is a matter of debate (Graça and Santos, 2007). Moreover, to what extent suberin and wax deposition and composition determine sealing properties of periderm still remains unclear (Schreiber et al., 2005). Several studies confirm the importance of waxes for the diffusion barrier (Soliday et al., 1979; Vogt et al., 1983; Schreiber et al., 2005), but the significance of aliphatic suberin has hardly been investigated at all. Interestingly, an Arabidopsis (Arabidopsis thaliana) knockout mutant for the GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE5 gene (GPAT5) with altered suberin showed higher tetrazolium salt permeability in the seed coat (Beisson et al., 2007).ω-Hydroxylation of fatty acids, a reaction carried out in plants by cytochrome P450 monooxygenases, is a crucial step in the biosynthesis of plant biopolymers (Kolattukudy, 1980; Nawrath, 2002). The Arabidopsis mutant lacerata, which shows phenotype defects compatible with a cutin deficiency, is defective in CYP86A8 encoding a fatty acid ω-hydroxylase (Wellesen et al., 2001). The aberrant induction of type three genes1 (att1) mutant, showing an altered cuticle ultrastructure and a higher transpiration rate than wild type, is defective in CYP86A2 and contains reduced amounts of ω-functionalized cutin monomers (Xiao et al., 2004). Moreover, a genome-wide study of cork oak (Quercus suber) bark highlighted a member of the cytochrome P450 of the CYP86A subfamily as a strong candidate gene for aliphatic suberin biosynthesis (Soler et al., 2007); and a role for CYP86A1 in the biosynthesis of suberin has recently been confirmed in the primary root of Arabidopsis knockout mutants (Li et al., 2007; Hofer et al., 2008). However, how the lack of fatty acid ω-hydroxylase activity may affect the structural features and sealing properties of suberin in periderm cell walls has not been documented.To provide experimental evidence of the role of CYP86A genes in periderm fine structure and water transpiration properties, especially quantitative permeability studies so far unexplored in Arabidopsis, we followed a strategy based on the potato (cv Desirée). The potato is a model of choice for such studies because transgenic plants can be produced in reasonable time and sufficient amounts of periderm can easily be obtained from tubers for chemical and physiological studies (Vogt et al., 1983; Schreiber et al., 2005). Based on the CYP86A gene that was highlighted in cork oak periderm as a strong suberin candidate for aliphatic suberin biosynthesis, we isolated the putative ortholog in potato and used a reverse genetic approach to analyze the effects of down-regulation on the chemical and ultrastructural features of suberin and on the physiological properties of the tuber periderm. Our findings indicate that down-regulation of CYP86A33, as this gene was designated, results in a strong decrease of the ω-functionalized monomers in aliphatic suberin, which are necessary for the suberin typical lamellar organization and for the periderm resistance to water loss.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号