首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Most fermented milk prepared by strains of Lactobacillus helveticus showed significant antihypertensive effect in spontaneously hypertensive rats (SHR) by oral administration. However, milk fermented by other species of lactic acid bacteria did not show significant antihypertensive effects. Most of the whey fractions of the milk fermented by L. helveticus or Lactobacillus delbrueckii subsp. bulgaricus showed higher angiotensin I-converting enzyme (ACE) inhibitory activity than the activity of milk fermented by other species. Proteolytic activity in cell wall and peptide content of the fermented milk were higher in L. helveticus strains than other species.  相似文献   

2.
Four different strains ofLactobacillus delbrueckii subsp.bulgaricus (Ss1 and Yop12) andStreptococcus salivarius subsp.thermophilus (Ss2 and Yop9) were isolated from two different yogurt sources in Argentina. In medium containing different carbon sources: lactose, fructose, sucrose or glucose plus fructose, the growth of a mixed culture (Yop12+Ss2) shows stimulation ofS. thermophilus and inhibition ofL. bulgaricus with respect to pure cultures. Both microorganisms in mixed culture grew less well on glucose plus galactose. However, in medium with glucose or galactose, both microorganisms were stimulated.  相似文献   

3.
The ability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus administered in yogurt to survive the passage through the upper gastrointestinal tract was investigated with Göttingen minipigs that were fitted with ileum T-cannulas. After ingestion of yogurt containing viable microorganisms, ileostomy samples were collected nearly every hour beginning 3 h after food uptake. Living L. delbrueckii subsp. bulgaricus and S. thermophilus were detected in the magnitude of 106 to 107 per gram of intestinal contents (wet weight) in all animals under investigation. A calculation of the minimum amount of surviving bacteria that had been administered is presented. Total DNA extracted from ileostomy samples was subjected to PCR, which was species specific for L. delbrueckii and S. thermophilus and subspecies specific for L. delbrueckii subsp. bulgaricus. All three bacterial groups could be detected by PCR after yogurt uptake but not after uptake of a semisynthetic diet. One pig apparently had developed an endogenous L. delbrueckii flora. When heat-treated yogurt was administered, L. delbrueckii was detected in all animals. S. thermophilus or L. delbrueckii subsp. bulgaricus was not detected, indicating that heat-inactivated cells and their DNAs had already been digested and their own L. delbrueckii flora had been stimulated for growth.  相似文献   

4.
Pure and mixed controlled-pH batch cultures of Streptococcus salivarius subsp. thermophilus 404 and Lactobacillus delbrueckii subsp. bulgaricus 398 have been conducted. The characteristics of growth and acidification and the productivity of the cultures were compared. During the mixed cultures, the growth characteristics revealed a pronounced stimulation of S. thermophilus whereas L. bulgaricus metabolism was not significantly improved. The final total population was 1.4 to 4.9 higher than in pure cultures. The acidification characteristics were not enhanced by the mixed culture conditions. The productivity of mixed cultures was 1.7 to 2.4 times higher as compared to an equivalent mixing of pure cultures.Correspondence to: C. Béal  相似文献   

5.
We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production.  相似文献   

6.
Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus. Received: 30 August 2000 / Accepted: 2 October 2000  相似文献   

7.
Two fermented milks containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus delbrueckii subsp. bulgaricus SS1 and L. lactis subsp. cremoris FT4. The pH 4.6-soluble nitrogen fraction of the two fermented milks was fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest ACE-inhibitory indexes were further purified, and the related peptides were sequenced by tandem fast atom bombardment-mass spectrometry. The most inhibitory fractions of the milk fermented by L. delbrueckii subsp. bulgaricus SS1 contained the sequences of β-casein (β-CN) fragment 6-14 (f6-14), f7-14, f73-82, f74-82, and f75-82. Those from the milk fermented by L. lactis subsp. cremoris FT4 contained the sequences of β-CN f7-14, f47-52, and f169-175 and κ-CN f155-160 and f152-160. Most of these sequences had features in common with other ACE-inhibitory peptides reported in the literature. In particular, the β-CN f47-52 sequence had high homology with that of angiotensin-II. Some of these peptides were chemically synthesized. The 50% inhibitory concentrations (IC50s) of the crude purified fractions containing the peptide mixture were very low (8.0 to 11.2 mg/liter). When the synthesized peptides were used individually, the ACE-inhibitory activity was confirmed but the IC50s increased considerably. A strengthened inhibitory effect of the peptide mixtures with respect to the activity of individual peptides was presumed. Once generated, the inhibitory peptides were resistant to further proteolysis either during dairy processing or by trypsin and chymotrypsin.  相似文献   

8.
The study was carried out to assess whether bovine milk whey and its products fermented by lactic acid bacteria could ameliorate the lipid peroxidation of hepatic mitochondria associated with cholestatic liver injury due to bile duct ligation. Rats were maintained on one of five diets for 3 weeks before being operated upon and killed 3 weeks after bile duct ligation. The diets included one deficient in vitamin E (control diet) and others supplemented with either 5% milk whey or 5% milk whey fermented with Bifidobacterium longum (B. longum), Lactobacillus acidophilus (L. acidophilus), and Streptococcus salivarius subsp. thermophillus (S. thermophillus). Bile duct-ligated rats, compared with sham-operated rats, had higher organ weights (liver and spleen), higher serum alkaline phosphatase activity, higher serum bilirubin concentration, and higher content of hepatic mitochondrial lipid hydroperoxide. The rats fed on diets containing milk whey fermented with B. longum ameliorated the elevation of organ weights, enzyme activity, bilirubin concentration, and content of mitochondrial lipid hydroperoxide. Milk whey and milk whey fermented with L. acidophilus and S. thermophillus also suppressed the elevation of mitochondrial lipid hydroperoxide, but had no ameliorating effects on organ weights, enzyme activity, and bilirubin concentration. The elevation of serum lipid hydroperoxide was ameliorated in rats fed on diets containing milk whey and milk whey fermented with B. longum and S. thermophillus. The reduction in plasma α-tocopherol due to bile duct ligation was ameliorated in those rats fed on diets containing milk whey fermented with B. longum as well as by S. themophillus. These results suggest that a milk whey fermented with lactic acid bacteria exerts a beneficial effect on free radical-mediated hepatic injury.  相似文献   

9.
Summary Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. Bulgaricus were immobilized separately in -carrageenan-locust bean gum gel beads. The beads were prepared by a dispersion process in a two-phase system (water in oil) and two ranges of bead diameter selected by sieving (0.5–1.0 mm and 1.0–2.0 mm). Fermentations with the two strains were conducted in bench bioreactors in a supplemented whey permeate medium. Free and entrapped cells (two ranges of bead diameter and two levels of initial bead cell load) were grown in mixed culture, and carbohydrate utilization, acid production and cell growth or cell release rate measured. Fermentation rates were influenced by bead diameter and initial cell load of the beads. Beads with high initial cell density increased fermentation rates compared to low cell density beads or free cells. Smaller diameter beads (0.5–1.0 mm) showed a stable tendency (not statistically significant p a > 0.05) towards higher cell release rates, lactose utilization, galactose accumulation and lactic acid production than did larger diameter beads (1.0–2.0 mm). Immobilization of S. salivarius subsp. thermophilus and L. delbrueckii subsp. bulgaricus in separate beads did not seem to affect protocooperation during batch fermentation, and allowed for high cell release rates into the medium.  相似文献   

10.
The production of pediocin in milk by Pediococcus acidilactici was evaluated in co-culture with the dairy fermentation cultures Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. The cultures were tested singly and in different combinations in milk (0 or 2% fat content) during incubation at 40°C for up to 10 h. Cell-free milk samples taken every 60 min were tested for bacteriocin activity against Listeria monocytogenes. Pediocin activity was not detectable when P. acidilactici was inoculated into milk as a monoculture. When P. acidilactici was grown in combination with the yogurt starter cultures S. thermophilus and Lb. delbrueckii ssp. bulgaricus, pediocin concentration reached 3,200–6,400 units ml−1 after 8 h of incubation. The results showed that pediocin producing pediococci may be useful adjunct components in mixed cultures of S. thermophilus and Lb. delbrueckii ssp. bulgaricus to amplify the bioprotective properties of fermented dairy foods against Listeria contamination.  相似文献   

11.
Summary The changes in the number of the starter microorganisms Lb. delbrueckii subsp. bulgaricus and Str. thermophiluswere followed in frozen-stored Kashkaval cheese made from cow’s milk. Kashkaval samples of various aging times were produced industrially, frozen at T=−16 °C and stored at T=−10 to −12 °C for 12 months. It was found that the number of Lb. delbrueckiisubsp. bulgaricus and Str. thermophilusdecreased considerably during frozen storage. The decrease was more substantial for Lb. delbrueckiisubsp. bulgaricus, which was evidence for its greater sensitivity to the impact of low temperatures. The aging time of Kashkaval did not influence the changes in the starter culture during frozen storage but is important for its amount in the product aged after defrosting. There was an increase in the Str. thermophilus: Lb. delbrueckiisubsp. bulgaricus ratio in samples with shorter aging time subjected to frozen storage and aged after defrosting. The changes in the starter culture in frozen stored Kashkaval cheese can be controlled by an appropriate combination of the two factors: aging time and period of frozen storage.  相似文献   

12.
Summary The influence of various storage solutions and temperature (4°C and 25°C) on viability ofStreptococcus salivarius subsp.thermophilus andLactobacillusdelbrueckii subsp.bulgaricus entrapped in κ-carrageenan-locust bean gum mixed gel beads was studied. The immobilized strains could be stored at 4°C in all storage solutions studied for at least 14 and 11 days respectively before counts decreased to 105c.f.u./mL, which was considered to be the practical limit for their use as inoculum in a fermentation process. The most effective storage solutions for preserving cell viability at 4°C were NaCl, glycerol and sorbitol solutions forS. thermophilus, and PO4 buffer and sorbitol solutions forL. bulgaricus. At 25°C,S. thermophilus could be stored for over 14 days in all solutions except glycerol, andL. bulgaricus for 4 days in 10% sorbitol.  相似文献   

13.
In the present study, the relationship between exopolysaccharide production and cholesterol removal rates of five strains of Lactobacillus delbrueckii subsp. bulgaricus isolated from home‐made yoghurt was studied. Test strains were selected according to their exopolysaccharide production capacity. Influence of different bile concentrations on cholesterol removal was investigated. It was confirmed that B3, ATCC 11842 and G11 strains which produce high amounts of exopolysaccharide (211, 200 and 159 mg/l, respectively) were able to remove more cholesterol from the medium compared to those that produce low amounts of exopolysaccharide (B2, A13). The highest cholesterol removal (31%) was observed by strain L. delbrueckii subsp. bulgaricus B3, producing a high amount of exopolysaccharide, in 3 mg/ml bile concentration. Cholesterol removal by resting and dead cells was investigated and it was found to be 4%–14% and 3%–10%, respectively. Cholesterol removal by immobilized and free cells of the B3 strain was studied and it was determined that immobilized cells are more effective. Influence of cholesterol on exopolysaccharide production has also been tested and it was found that cholesterol increased the production of EPS. The results indicated that: (i) there is a correlation between cholesterol removal and EPS production; and (ii) L. delbrueckii subsp. bulgaricus B3 is regarded as a suitable candidate probiotic and adjunct culture.  相似文献   

14.
A yogurt culture (Streptococcus thermophilus 15HA + Lactobacillus delbrueckii subsp. bulgaricus 2-11) was studied in conditions of aerobic batch fermentation (10–40% dissolved oxygen in milk). The growth and acidification of S. thermophilus 15HA were stimulated at 20% oxygen concentration and the lactic acid process in a mixed culture was shortened by 1 h (2.5 h for the aerobic culture and 3.5 h for the anaerobic mixed culture). Streptococcus thermophilus 15HA oxygen tolerance was significantly impaired at oxygen concentrations in the milk above 30%. Though S. thermophilus 15HA was able to overcome to some extent the impact of high oxygen concentration (40%), the lactic acid produced was insufficient to coagulate the milk casein (4.0 g lactic acid l−1 in the mixed culture and 3.8 g lactic acid l−1 in the pure culture). A dramatic decrease in the viable cell count of L. delbrueckii subsp. bulgaricus 2-11 in the pure and mixed cultures was recorded at 30% dissolved oxygen. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Genome-scale metabolic models and flux balance analysis (FBA) have been extensively used for modeling and designing bacterial fermentation. However, FBA-based metabolic models that accurately simulate the dynamics of coculture are still rare, especially for lactic acid bacteria used in yogurt fermentation. To investigate metabolic interactions in yogurt starter culture of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, this study built a dynamic metagenome-scale metabolic model which integrated constrained proteome allocation. The accuracy of the model was evaluated by comparing predicted bacterial growth, consumption of lactose and production of lactic acid with reference experimental data. The model was then used to predict the impact of different initial bacterial inoculation ratios on acidification. The dynamic simulation demonstrated the mutual dependence of S. thermophilus and L. d. bulgaricus during the yogurt fermentation process. As the first dynamic metabolic model of the yogurt bacterial community, it provided a foundation for the computer-aided process design and control of the production of fermented dairy products.  相似文献   

16.
Response surface methodology (RSM) was used to optimize a protective medium for enhancing the cell viability of Lactobacillus delbrueckii subsp. bulgaricus LB14 during freeze-drying. Using a previous Plackett–Burman design, it was found that sucrose, glycerol, sorbitol and skim milk were the most effective freeze-drying protective agents for L. bulgaricus LB14. A full factorial central composite design was applied to determine the optimum levels of these four protective agents. The experimental data allowed the development of an empirical model (P<0.0001) describing the inter-relationships between the independent and dependent variables. By solving the regression equation, and analyzing the response surface contour and surface plots, the optimal concentrations of the agents were determined as: sucrose 66.40 g/L, glycerol 101.20 g/L, sorbitol 113.00 g/L, and skim milk 130.00 g/L. L. bulgaricus LB14 freeze-dried in this medium obtained a cell viability of up to 86.53%.  相似文献   

17.
18.
The concentrations of γ-aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg−1. Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of the 16S rRNA gene. Twelve species were found. Lactobacillus paracasei PF6, Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactococcus lactis PU1, Lactobacillus plantarum C48, and Lactobacillus brevis PM17 were the best GABA-producing strains during fermentation of reconstituted skimmed milk. Except for L. plantarum C48, all these strains were isolated from cheeses with the highest concentrations of GABA. A core fragment of glutamate decarboxylase (GAD) DNA was isolated from L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48 by using primers based on two highly conserved regions of GAD. A PCR product of ca. 540 bp was found for all the strains. The amino acid sequences deduced from nucleotide sequence analysis showed 98, 99, 90, and 85% identity to GadB of L. plantarum WCFS1 for L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, respectively. Except for L. lactis PU1, the three lactobacillus strains survived and synthesized GABA under simulated gastrointestinal conditions. The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA.  相似文献   

19.
The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen.  相似文献   

20.
Exopolysaccharide (EPS) preparations from Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) strains LBB.B26 and LBB.B332 and Streptococcus thermophilus strains LBB.T54 and LBB.T6V were characterized using ion-exchange chromatography and gel filtration. All four preparations contained a neutral EPS with molecular mass in the range of 1.3−1.6 × 106 Da (HMM-EPS). The EPS preparations from the two L. bulgaricus strains also contained an acidic low molecular mass EPS fraction (LMM-EPS) comprising from 10% to 34% of the total EPS yield. HMM-EPS preparations were subjected to High Pressure Liquid Chromatography (HPLC) analysis of monomer sugars after complete hydrolysis. Glucose, galactose and/or rhamnose in different ratios proved to be the principal sugars building the HMM-EPS from all four strains. The chemical composition of HMM-EPS was strictly strain-specific. The LMM-EPS contained galactose. The viscosifying properties of the four different HMM-EPS varied greatly with intrinsic viscosity in the range from 0.26 (strain B26) to 2.38 (strain T6V). For 24 h the two L. bulgaricus strains accumulated more HMM-EPS in milk (>70 mg l−1) than S. thermophilus strains T54 and T6V (<30 mg l−1), but maximal yields were reached earlier with cocci (8 h) than with rods (16–24 h). The contribution of HMM-EPS production to increased viscosity of fermented milk was demonstrated for all of the tested strains grown as monocultures or as mixed yogurt starters compared to non-EPS producing S. thermophilus LBB.A and poor EPS-producer L. bulgaricus LBB.B5. The extent of increased viscosity was strongly dependent on the nature of the produced HMM-EPS, rather than simply on polymer yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号