首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic Evidence for Pak1 Autoinhibition and Its Release by Cdc42   总被引:10,自引:6,他引:4       下载免费PDF全文
Pak1 protein kinase of Schizosaccharomyces pombe, a member of the p21-GTPase-activated protein kinase (PAK) family, participates in signaling pathways including sexual differentiation and morphogenesis. The regulatory domain of PAK proteins is thought to inhibit the kinase catalytic domain, as truncation of this region renders kinases more active. Here we report the detection in the two-hybrid system of the interaction between Pak1 regulatory domain and the kinase catalytic domain. Pak1 catalytic domain binds to the same highly conserved region on the regulatory domain that binds Cdc42, a GTPase protein capable of activating Pak1. Two-hybrid, mutant, and genetic analyses indicated that this intramolecular interaction rendered the kinase in a closed and inactive configuration. We show that Cdc42 can induce an open configuration of Pak1. We propose that Cdc42 interaction disrupts the intramolecular interactions of Pak1, thereby releasing the kinase from autoinhibition.  相似文献   

2.
p21-activated kinases (Pak)/Ste20 kinases are regulated in vitro and in vivo by the small GTP-binding proteins Rac and Cdc42 and lipids, such as sphingosine, which stimulate autophosphorylation and phosphorylation of exogenous substrates. The mechanism of Pak activation by these agents remains unclear. We investigated Pak kinase activation in more detail to gain insight into the interplay between the GTPase/sphingosine binding, an intramolecular inhibitory interaction, and autophosphorylation. We present biochemical evidence that an autoinhibitory domain (ID) contained within amino acid residues 67-150 of Pak1 interacts with the carboxyl-terminal kinase domain and that this interaction is regulated in a GTPase-dependent fashion. Cdc42- and sphingosine-stimulated Pak1 activity can be inhibited in trans by recombinant ID peptide, indicating similarities in their mode of activation. However, Pak1, which was autophosphorylated in response to either GTPase or sphingosine, is highly active and is insensitive to inhibition by the ID peptide. We identified phospho-acceptor site threonine 423 in the kinase activation loop as a critical determinant for the sensitivity to autoinhibition and enzymatic activity. Phosphorylation studies suggested that the stimulatory effect of both GTPase and sphingosine results in exposure of the activation loop, making it accessible for intermolecular phosphorylation.  相似文献   

3.
Selective activation of Rac GTPase signaling pathways requires the specific release of Rac from RhoGDI complexes. We identified a RhoGDI kinase from bovine brain as p21-activated kinase (Pak). Pak1 binds and phosphorylates RhoGDI both in vitro and in vivo at Ser101 and Ser174. This resulted in dissociation of Rac1-RhoGDI, but not RhoA-RhoGDI, complexes, as determined by in vitro assays of complexation and in vivo by coimmunoprecipitation analysis. We observed that Cdc42-induced Rac1 activation is inhibited by expression of Pak1 autoinhibitory domain. The dissociation of Rac1 from RhoGDI and its subsequent activation stimulated by PDGF or EGF is also attenuated by Pak1 autoinhibitory domain, and this is dependent on the ability of RhoGDI to be phosphorylated at Ser101/174. These results support a role for Pak1-mediated RhoGDI phosphorylation as a mechanism for Cdc42-mediated Rac activation, and suggest the possibility of Rac-induced positive feed-forward regulation of Rac activity.  相似文献   

4.
A STE20/p65pak homolog was isolated from fission yeast by PCR. The pak1+ gene encodes a 72 kDa protein containing a putative p21-binding domain near its amino-terminus and a serine/threonine kinase domain near its carboxyl-terminus. The Pak1 protein autophosphorylates on serine residues and preferentially binds to activated Cdc42p both in vitro and in vivo. This binding is mediated through the p21 binding domain on Pak1p and the effector domain on Cdc42p. Overexpression of an inactive mutant form of pak1 gives rise to cells with markedly abnormal shape with mislocalized actin staining. Pak1 overexpression does not, however, suppress lethality associated with cdc42-null cells or the morphologic defeat caused by overexpression of mutant cdc42 alleles. Gene disruption of pak1+ establishes that, like cdc42+, pak1+ function is required for cell viability. In budding yeast, pak1+ expression restores mating function to STE20-null cells and, in fission yeast, overexpression of an inactive form of Pak inhibits mating. These results indicate that the Pak1 protein is likely to be an effector for Cdc42p or a related GTPase, and suggest that Pak1p is involved in the maintenance of cell polarity and in mating.  相似文献   

5.
Atypical RhoV GTPase (Chp/Wrch-2) is a member of the human Rho GTPase family, which belongs to the superfamily of Ras-related small GTPases. The biological functions of RhoV, regulation of its activity, and mechanisms of its action remain largely unexplored. Rho GTPases regulate a wide range of cellular processes by interacting with protein targets called effectors. Several putative RhoV effectors have been identified, including protein kinases of the Pak (p21-activated kinase) family: Pak1, Pak2, Pak4, and Pak6. RhoV GTPase activates Pak1 protein kinase and simultaneously induces its ubiquitin-dependent degradation. Pak1 regulates E-cadherin localization at adherens junctions downstream of RhoV during gastrulation in fish. The effector domain of RhoV mediates its binding to the CRIB (Cdc42/Rac1 interactive binding) motif in the N-terminal p21-binding domain (PBD) of Pak6 protein kinase. The role of the RhoV effector domain in mediating interaction with Pak1 has not been studied. This study has identified mutations in the effector domain of RhoV GTPase (Y60K, T63A, L65A, and D66A) that impair its interaction with Pak1 in the GST-PAK-PBD pull-down assay and coimmunoprecipitation. Our results suggest that the effector domain of RhoV mediates its binding to Pak1, complementing the current view of the molecular basics of RhoV binding to effectors of the Pak family. These data lay the basis for further studies on the role of Pak1 in RhoV-activated signaling pathways and cellular processes.  相似文献   

6.
Autoinhibited p21-activated kinase 1 (Pak1) can be activated in vitro by the plasma membrane-bound Rho GTPases Rac1 and Cdc42 as well as by the lipid phosphatidylinositol (4,5)-bisphosphate (PIP2). Activator binding is mediated by a GTPase-binding motif and an adjacent phosphoinositide-binding motif. Whether these two classes of activators play alternative, additive, or synergistic roles in Pak1 activation is unknown, as is their contributions to Pak1 activation in vivo. To address these questions, we developed a system to mimic the membrane anchoring of Rho GTPases by creating liposomes containing both PIP2 and a Ni2+-NTA modified lipid capable of binding hexahistidine-tagged Cdc42. We find that among all biologically relevant phosphoinositides, only PIP2 is able to synergistically activate Pak1 in concert with Cdc42. Membrane binding of the kinase was highly sensitive to the spatial density of PIP2 and Pak1 demonstrated dramatically enhanced affinity for Cdc42 anchored in a PIP2 environment. To validate these findings in vivo, we utilized an inducible recruitment system to drive the ectopic synthesis of PIP2 on Golgi membranes, which normally have active Cdc42 but lack significant concentrations of PIP2. Pak1 was recruited to PIP2-containing membranes in a manner dependent on the ability of Pak1 to bind to both PIP2 and Cdc42. These findings provide a mechanistic explanation for the essential role of both phosphoinositides and GTPases in Pak1 recruitment and activation. In contrast, Ack, another Cdc42 effector kinase that lacks an analogous phosphoinositide-binding motif, fails to show the same enhancement of membrane binding and activation by PIP2, thus indicating that regulation by PIP2 and Cdc42 could provide a combinatorial code for activation of different GTPase effectors in different subcellular locations.  相似文献   

7.
p21-activated kinase 1 (Pak1) is an effector for the small GTPases Cdc42 and Rac. Because Pak1 binds to and is activated by both these GTPases, it has been difficult to precisely delineate the signaling pathways that link extracellular stimuli to Pak1 activation. To separate activation of Pak1 by Cdc42 versus activation by Rac, we devised a genetic screen in yeast that enabled us to create and identify Pak1 mutants that selectively couple to Cdc42 but not Rac1. We recovered several such Pak1 mutants and found that the residues most often affected lie within the p21 binding domain, a region previously known to mediate Pak1 binding to GTPases, but that several mutations also map outside the borders of the p21 binding domain. Pak1 mutants that associate with Cdc42 but not Rac1 were also activated by Cdc42 but not Rac1. In rat 3Y1 cells expressing oncogenic Ha-Ras, the Pak1 mutants defective in Rac1 binding are not activated, suggesting that Ras signals through a GTPase other than Cdc42 to activate Pakl. Similar results were obtained when epidermal growth factor was used to activate Pak1. However, Pak1 mutants that are unable to bind Rac are nonetheless well activated by calf serum, implying that this stimulus may induce Pak activation independent of Rac.  相似文献   

8.
Activation of p21-activated kinases (Paks) is achieved through binding of the GTPases Rac or Cdc42 to a conserved domain in the N-terminal regulatory region of Pak. Additional signaling components are also likely to be important in regulating Pak activation. Recently, a family of Pak-interacting guanine nucleotide exchange factors (Pix) have been identified and which are good candidates for regulating Pak activity. Using an active, truncated form of alphaPix (amino acids 155-545), we observe stimulation of Pak1 kinase activity when alphaPix155-545 is co-expressed with Cdc42 and wild-type Pak1 in COS-1 cells. This activation does not occur when we co-express a Pak1 mutant unable to bind alphaPix. The activation of wild-type Pak1 by alphaPix155-545 also requires that alphaPix155-545 retain functional exchange factor activity. However, the Pak1(H83,86L) mutant that does not bind Rac or Cdc42 is activated in the absence of GTPase by alphaPix155-545 and by a mutant of alphaPix155-545 that no longer has exchange factor activity. Pak1 activity stimulated in vitro using GTPgammaS-loaded Cdc42 was also enhanced by recombinant alphaPix155-545 in a binding-dependent manner. These data suggest that Pak activity can be modulated by physical interaction with alphaPix and that this specific effect involves both exchange factor-dependent and -independent mechanisms.  相似文献   

9.
Chp/RhoV is an atypical Rho GTPase whose functions are far from being fully understood. To date several effector proteins of Chp have been identified, including p21-activated kinases Pak1, Pak2, and Pak4. Using a yeast two-hybrid system and co-immunoprecipitation, here we show that another p21-activated kinase, Pak6, is a novel Chp-binding protein. Interaction between Chp and Pak6 depends on the activation state of the GTPase, suggesting that Pak6 is an effector protein for Chp. Point mutations in the effector domain of Chp or in the CRIB motif of Pak6 significantly impair the interaction between Chp and Pak6 upon co-immunoprecipitation, suggesting that the binding interface involves the effector domain of Chp and the CRIB motif in Pak6. We found that Chp does not affect the phosphorylation status of the S560 residue in the catalytic domain of Pak6 when Chp and Pak6 are co-expressed in HEK293 cells. Therefore, similarly to Cdc42, Chp is not likely to activate Pak6. In NCI-H1299 cells, Chp co-localizes with Pak6 on vesicular structures in activation state-dependent manner. Taking the data together, we report here the identification of p21-activated kinase Pak6 as a novel effector of the atypical Rho GTPase Chp. Our data suggest further directions in elucidating biological functions of these proteins.  相似文献   

10.
Previous studies have demonstrated dimerization of intercellular adhesion molecule-1 (ICAM-1) on the cell surface and suggested a role for immunoglobulin superfamily domain 5 and/or the transmembrane domain in mediating such dimerization. Crystallization studies suggest that domain 1 may also mediate dimerization. ICAM-1 binds through domain 1 to the I domain of the integrin alpha(L)beta(2) (lymphocyte function-associated antigen 1). Soluble C-terminally dimerized ICAM-1 was made by replacing the transmembrane and cytoplasmic domains with an alpha-helical coiled coil. Electron microscopy revealed C-terminal dimers that were straight, slightly bent, and sometimes U-shaped. A small number of apparently closed ring-like dimers and W-shaped tetramers were found. To capture ICAM-1 dimerized at the crystallographically defined dimer interface in domain 1, cysteines were introduced into this interface. Several of these mutations resulted in the formation of soluble disulfide-bonded ICAM-1 dimers (domain 1 dimers). Combining a domain 1 cysteine mutation with the C-terminal dimers (domain 1/C-terminal dimers) resulted in significant amounts of both closed ring-like dimers and W-shaped tetramers. Surface plasmon resonance studies showed that all of the dimeric forms of ICAM-1 (domain 1, C-terminal, and domain 1/C-terminal dimers) bound similarly to the integrin alpha(L)beta(2) I domain, with affinities approximately 1.5--3-fold greater than that of monomeric ICAM-1. These studies demonstrate that ICAM-1 can form at least three different topologies and that dimerization at domain 1 does not interfere with binding in domain 1 to alpha(L)beta(2).  相似文献   

11.
12.
The serine/threonine kinase p21-activated kinase 1 (Pak1) controls the actin cytoskeletal and ruffle formation through mechanisms that are independent of GTPase activity. Here we identify filamin FLNa as a Pak1-interacting protein through a yeast two-hybrid screen using the amino terminus of Pak1 as a bait. FLNa is stimulated by physiological signalling molecules to undergo phosphorylation by Pak1 and to interact and colocalize with endogenous Pak1 in membrane ruffles. The ruffle-forming activity of Pak1 is functional in FLNa-expressing cells but not in FLNa-deficient cells. In FLNa, the Pak1-binding site involves tandem repeat 23 in the carboxyl terminus and phosphorylation takes place on serine 2152. The FLNa-binding site in Pak1 is localized between amino acids 52 and 132 in the conserved Cdc42/Rac-interacting (CRIB) domain; accordingly, FLNa binding to the CRIB domain stimulates Pak1 kinase activity. Our results indicate that FLNa may be essential for Pak1-induced cytoskeletal reorganization and that the two-way regulatory interaction between Pak1 and FLNa may contribute to the local stimulation of Pak1 activity and its targets in cytoskeletal structures.  相似文献   

13.
Rho guanosine triphosphatases (GTPases) are critical regulators of cytoskeletal dynamics and control complex functions such as cell adhesion, spreading, migration, and cell division. It is generally accepted that localized GTPase activation is required for the proper initiation of downstream signaling events, although the molecular mechanisms that control targeting of Rho GTPases are unknown. In this study, we show that the Rho GTPase Rac1, via a proline stretch in its COOH terminus, binds directly to the SH3 domain of the Cdc42/Rac activator beta-Pix (p21-activated kinase [Pak]-interacting exchange factor). The interaction with beta-Pix is nucleotide independent and is necessary and sufficient for Rac1 recruitment to membrane ruffles and to focal adhesions. In addition, the Rac1-beta-Pix interaction is required for Rac1 activation by beta-Pix as well as for Rac1-mediated spreading. Finally, using cells deficient for the beta-Pix-binding kinase Pak1, we show that Pak1 regulates the Rac1-beta-Pix interaction and controls cell spreading and adhesion-induced Rac1 activation. These data provide a model for the intracellular targeting and localized activation of Rac1 through its exchange factor beta-Pix.  相似文献   

14.
Human guanylate-binding protein 1 (hGBP1) belongs to the superfamily of large, dynamin-related GTPases. The expression of hGBP1 is induced by stimulation with interferons (mainly interferon-γ), and it plays a role in different cellular responses to inflammatory cytokines, e.g. pathogen defence, control of proliferation, and angiogenesis. Although other members of the dynamin superfamily show a diversity of cellular functions, they share a common GTPase mechanism that relies on nucleotide-controlled oligomerization and self-activation of the GTPase. Previous structural studies on hGBP1 have suggested a mechanism of GTPase and GDPase activity that, as a critical step, involves dimerization of the large GTP-binding domains. In this study, we show that the guanine cap of hGBP1 is the key structural element responsible for dimerization, and is thereby essential for self-activation of the GTPase activity. Studies of concentration-dependent GTP hydrolysis showed that mutations of residues in the guanine cap, in particular Arg240 and Arg244, resulted in higher dissociation constants of the dimer, whereas the maximum hydrolytic activity was largely unaffected. Additionally, we identified an intramolecular polar contact (Lys62-Asp255) whose mutation leads to a loss of self-activation capability and controlled oligomer formation. We suggest that this contact structurally couples the guanine cap to the switch regions of the GTPase, translating the structural changes that occur upon nucleotide binding to a change in oligomerization and self-activation.  相似文献   

15.
P‐selectin glycoprotein ligand‐1 (PSGL‐1) is a homodimeric mucin ligand that is important to mediate the earliest adhesive event during an inflammatory response by rapidly forming and dissociating the selectin‐ligand adhesive bonds. Recent research indicates that the noncovalent associations between the PSGL‐1 transmembrane domains (TMDs) can substitute for the C320‐dependent covalent bond to mediate the dimerization of PSGL‐1. In this article, we combined TOXCAT assays and molecular dynamics (MD) simulations to probe the mechanism of PSGL‐1 dimerization. The results of TOXCAT assays and Martini coarse‐grained molecular dynamics (CG MD) simulations demonstrated that PSGL‐1 TMDs strongly dimerized in a natural membrane and a leucine zipper motif was responsible for the noncovalent dimerization of PSGL‐1 TMD since mutations of the residues that occupied a or d positions in an (abcdefg)n leucine heptad repeat motif significantly reduced the dimer activity. Furthermore, we studied the effects of the disulfide bond on the PSGL‐1 dimer using MD simulations. The disulfide bond was critical to form the leucine zipper structure, by which the disulfide bond further improved the stability of the PSGL‐1 dimer. These findings provide insights to understand the transmembrane association of PSGL‐1 that is an important structural basis for PSGL‐1 preferentially binding to P‐selectin to achieve its biochemical and biophysical functions.  相似文献   

16.
Pak1 (p21-activated kinase-1) and the dynein light chain, LC8, are overexpressed in breast cancer, and their direct interaction has been proposed to regulate tumor cell survival. These effects have been attributed in part to Pak1-mediated phosphorylation of LC8 at serine 88. However, LC8 is homodimeric, which renders Ser(88) inaccessible. Moreover, Pak1 does not contain a canonical LC8 binding sequence compared with other characterized LC8 binding sequences. Together, these observations raise the question whether the Pak1/LC8 interaction is distinct (i.e. enabled by a unique interface independent of LC8 dimerization). Herein, we present results from biochemical, NMR, and crystallographic studies that show that Pak1 (residues 212-222) binds to LC8 along the same groove as canonical LC8 interaction partners (e.g. nNOS and BimL). Using LC8 point mutants K36P and T67A, we were able to differentiate Pak1 from canonical LC8 binding sequences and identify a key hydrogen bond network that compensates for the loss of the conserved glutamine in the consensus sequence. We also show that the target binding interface formed through LC8 dimerization is required to bind to Pak1 and precludes phosphorylation of LC8 at Ser(88). Consistent with this observation, in vitro phosphorylation assays using activated Pak1 fail to phosphorylate LC8. Although these results define structural details of the Pak1/LC8 interaction and suggest a hierarchy of target binding affinities, they do not support the current model whereby Pak1 binds to and subsequently phosphorylates LC8 to promote anchorage-independent growth. Rather, they suggest that LC8 binding modulates Pak1 activity and/or nuclear localization.  相似文献   

17.
Among the mechanisms by which the Ras oncogene induces cellular transformation, Ras activates the mitogen-activated protein kinase (MAPK or ERK) cascade and a related cascade leading to activation of Jun kinase (JNK or SAPK). JNK is additionally regulated by the Ras-related G proteins Rac and Cdc42. Ras also regulates the actin cytoskeleton through an incompletely elucidated Rac-dependent mechanism. A candidate for the physiological effector for both JNK and actin regulation by Rac and Cdc42 is the serine/threonine kinase Pak (p65pak). We show here that expression of a catalytically inactive mutant Pak, Pak1(R299), inhibits Ras transformation of Rat-1 fibroblasts but not of NIH 3T3 cells. Typically, 90 to 95% fewer transformed colonies were observed in cotransfection assays with Rat-1 cells. Pak1(R299) did not inhibit transformation by the Raf oncogene, indicating that inhibition was specific for Ras. Furthermore, Rat-1 cell lines expressing Pak1(R299) were highly resistant to Ras transformation, while cells expressing wild-type Pak1 were efficiently transformed by Ras. Pak1(L83,L86,R299), a mutant that fails to bind either Rac or Cdc42, also inhibited Ras transformation. Rac and Ras activation of JNK was inhibited by Pak1(R299) but not by Pak1(L83,L86,R299). Ras activation of ERK was inhibited by both Pak1(R299) and Pak1(L83,L86,R299), while neither mutant inhibited Raf activation of ERK. These results suggest that Pak1 interacts with components essential for Ras transformation and that inhibition can be uncoupled from JNK but not ERK signaling.  相似文献   

18.
Phospholipid-enriched membranes such as the plasma membrane can serve as direct regulators of kinase signaling. Pak1 is involved in growth factor signaling at the plasma membrane, and its dysregulation is implicated in cancer. Pak1 adopts an autoinhibited conformation that is relieved upon binding to membrane-bound Rho GTPases Rac1 or Cdc42, but whether lipids also regulate Pak1 in vivo is unknown. We show here that phosphoinositides, particularly PIP(2), potentiate Rho-GTPase-mediated Pak1 activity. A positively charged region of Pak1 binds to phosphoinositide-containing membranes, and this interaction is essential for membrane recruitment and activation of Pak1 in response to extracellular signals. Our results highlight an active role for lipids as allosteric regulators of Pak1 and suggest that Pak1 is a "coincidence detector" whose activation depends on GTPases present in phosphoinositide-rich membranes. These findings expand the role of phosphoinositides in kinase signaling and suggest how altered phosphoinositide metabolism may upregulate Pak1 activity in cancer cells.  相似文献   

19.
Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology   总被引:7,自引:0,他引:7  
The small GTPase Rac and its effectors, the Pak1 and p35/Cdk5 kinases, have been assigned important roles in regulating cytoskeletal dynamics in neurons. Our previous work revealed that the neuronal p35/Cdk5 kinase associates with Pak1 in a RacGTP-dependent manner, causing hyperphosphorylation and down-regulation of Pak1 kinase activity. We have now demonstrated direct phosphorylation of Pak1 on threonine 212 by the p35/Cdk5 kinase. In neuronal growth cones, Pak1 phosphorylated on Thr-212 localized to actin and tubulin-rich areas, suggesting a role in regulating growth cone dynamics. The expression of a non-phosphorylatable Pak1 mutant (Pak1A212) induced dramatic neurite disorganization. We also observed a strong association between p35/Cdk5 and the Pak1 C-terminal kinase domain. Overall, our data show that in neurons, membrane-associated, active Pak1 is regulated by the p35/Cdk5 kinase both by association and phosphorylation, which is essential for the proper regulation of the cytoskeleton during neurite outgrowth and remodeling.  相似文献   

20.
以PCR方法从人脑cDNA基因文库扩增Rac1、Cdc42 cDNA全序列及其效应蛋白基因Pak1、N-WASP的GTP酶联结区域(GBD)序列,从dsRed1-N1质粒扩增红色荧光蛋白dsRed1cDNA全序列.将cDNA序列依次定向克隆至pECFP-N1质粒载体,获得基于FRET原理,包含dsRed1,Pak1或N-WASP的GBD,Rac1或Cdc42,ECFP编码序列的单分子探针.在dsRed1的C末端加入一段CAAM法尼基化基序,构建包含EGFP,Pak1的GBD,Rac1或Cdc42,dsRed1-CAAM的质膜特异表达的单分子探针.采用这两种探针,可用于监测活细胞中诱导激活的Rac1、Cdc42信号转导通路的3D时空图像,检测待测蛋白分子的GEF或GAP活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号