首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A device is presented for the generation of equally sized plaques of sensitive particles in a 96-well format. The resulting particle plaques can be used for the measurement of adsorption isotherms and uptake kinetics in protein chromatography or for immobilization reactions. The particle plaques are formed from suspensions with a vacuum device that is designed as a reusable sandwich module. The particles are retained by a mesh while the solvent is removed by the vacuum. As most particles used for protein chromatography are sensitive to mechanical stress and dehydration, the vacuum device is gentle enough to allow the use of these particles, thus eliminating the uncertainty of slurry preparation and pipetting. Apparatus characteristics and preparation procedures are described precisely. The physical intactness of the particles after the preparation procedure is proved by microscopic analysis. Data on the uniformity of the obtained resin plaques with respect to the reproducibility of their adsorption performance is given. Finally, adsorption isothermal and kinetic data of BSA on an ordinary HIC system obtained by high-throughput measurements are shown as an application example.  相似文献   

2.
The use of a simple device by which a layer of solvent may be deposited onto a solution of an optically absorbing solute in a cylindrical quartz tube, without substantial mixing of solution and solvent, is described. The spreading of the boundary thus formed may be monitored as a function of time using an automated absorbance scanning device previously described [A. K. Attri and A. P. Minton (1983) Anal. Biochem. 133, 142-152]. A semiautomatic procedure for determining the diffusion coefficient from the time dependence of the shape of the boundary is described and is particularly well-suited for real-time data analysis with a laboratory microcomputer. The diffusion coefficients of several proteins have been measured using the technique reported, and the results are generally in good agreement with values reported in the literature. The feasibility of using this technique in combination with a previously described method for measuring the sedimentation coefficient [A. K. Attri and A. P. Minton (1984) Anal. Biochem. 136, 407-415] to rapidly determine the molecular weight of a protein is established.  相似文献   

3.
A simple mixing device for studying fast reactions by quasielastic light scattering is described. The convection due to mixing is minimized and rapidly damped, so that light scattering measurements can be made immediately after mixing.  相似文献   

4.
We report a route to synthesize a wide range of organophosphates of biological significance in a deep eutectic solvent (2:1 urea and choline chloride), utilizing various orthophosphate sources. Heating an organic alcohol in the solvent along with a soluble phosphorus source yields phosphorus esters of choline as well as that of the added organic in yields between 15 to 99 %. In addition, phosphite analogs of biological phosphates and peptides were also formed by the simple mixing of reagents and heating at 60–70 °C in the deep eutectic solvent. The presented dehydration reactions are relevant to prebiotic and green chemistry in alternative solvents.  相似文献   

5.
The increase in the number of large multi-component complexes and membrane protein crystal structures determined over the last few years can be ascribed to a number of factors such as better protein expression and purification systems, the emergence of high-throughput crystallization techniques and the advent of 3rd generation synchrotron sources. However, many systems tend to produce crystals that can be extremely heterogeneous in their diffraction properties. This prevents, in many cases, the collection of diffraction data of sufficient quality to yield useful biological or phase information. Techniques that can increase the diffraction quality of macromolecular crystals can therefore be essential in the successful conclusion of these challenging projects. No technique is universal but encouraging results have been recently achieved by carrying out the controlled dehydration of crystals of biological macromolecules. A new device that delivers a stream of air with a precisely controlled relative humidity to the complicated sample environment found at modern synchrotron beamlines has been conceived at the EMBL Grenoble and developed by the EMBL and the ESRF as part of the SPINE2 complexes project, a European Commission funded protein structure initiative. The device, the HC1b, has been available for three years at the ESRF macromolecular crystallography beamlines and many systems have benefitted from on-line controlled dehydration. Here we describe a standard dehydration experiment, highlight some successful cases and discuss the different possible uses of the device.  相似文献   

6.
Transition state stabilization of subtilisins in organic media   总被引:1,自引:0,他引:1  
Electrostatic forces are among the stabilizing interactions that contribute to the high degree of enzyme-transition state complementarity. The active-site polarity, which can differ substaintially from that of water, is thus an important determinant of transition state stabilization. Here we pose the question of whether the rate of an enzymatic reaction proceeding through a charged transition state can be increased by increasing the active-site polarity in an organic solvent. The active-site polarity of subtilisin has been reduced by dehydration and suspension in a nonpolar solvent (tetrahydrofuran), and then increased by adding water to the solvent. Enhancing the local polarity substantially increasing the rate of catalysis, implicating polarity as an important factor in stabilizing the charged tetrahedral transition state. Studies with subtilisins whose active sites have been modified by site-directed mutagenesis support the role of polarity in transition state stabilization. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
Steady-state kinetic studies of the bovine carbonic anhydrase B-catalyzed hydration of CO2, dehydration of HCO3-, and hydrolysis of p-nitrophenylacetate were made in glycerol/water solvents of increased viscosity in order that the effect of diffusion-control on the substrate association reactions could be determined. The minimum association rate constants (kmin = V/(Km[E0])) were obtained at low substrate concentrations. The esterase activity did not depend upon the solvent viscosity. However, both the CO2 hydration and HCO3- dehydration reactions depended upon the solvent viscosity consistent with partial diffusion control. Thus both chemical activation and diffusion control processes contribute to the observed kmin. In low-viscosity aqueous solutions both hydration and dehydration are largely controlled by chemical activation. However, at higher viscosities, equal to that found in the interior of the erythrocyte, both reactions are largely diffusion controlled. This result can be interpreted to mean that carbonic anhydrase is a highly evolved enzyme that has approached its maximum efficiency. The extent of diffusion control observed rules out H2CO3 as a significant reactant with the enzyme. Several models that yield minimum steric requirements for access of substrate to the active site are examined. Minimum steric constraints are less for the smaller CO2. The slower esterase reaction is not influenced by diffusion.  相似文献   

8.
A basket‐integrated optical device is developed to consistently treat tubular tissue by centering an optical diffuser in the lumen. Four nitinol arms in conjunction with the optical diffusing applicator are deployed to induce homogeneous circumferential light emission and concentric photothermal coagulation on tracheal tissue. A 1470‐nm laser light is employed for the tissue testing at various irradiation conditions and evaluated in terms of thermal gradient and temperature evolution. Preliminary experiments on liver tissue demonstrate the concentric development of the radial thermal coagulation in the tissue (eccentric ratio = ~5.5%). The interstitial tissue temperature increases with the total amount of energy delivery (around 65°C). Ex vivo trachea testing yields up to 16.5% tissue shrinkage due to dehydration as well as uniform ablation of the cilia and goblet cells in a mucosa layer under 7‐W irradiation for 10 s. The proposed optical device may be a feasible therapeutic method to entail the circumferential coagulation in the tubular tissues in a reliable manner.   相似文献   

9.
Generally, chemical tissue clearing is performed by a solution consisting of two parts benzyl benzoate and one part benzyl alcohol. However, prolonged exposure to this mixture markedly reduces the fluorescence of GFP expressing specimens, so that one has to compromise between clearing quality and fluorescence preservation. This can be a severe drawback when working with specimens exhibiting low GFP expression rates. Thus, we screened for a substitute and found that dibenzyl ether (phenylmethoxymethylbenzene, CAS 103-50-4) can be applied as a more GFP-friendly clearing medium. Clearing with dibenzyl ether provides improved tissue transparency and strikingly improved fluorescence intensity in GFP expressing mouse brains and other samples as mouse spinal cords, or embryos. Chemical clearing, staining, and embedding of biological samples mostly requires careful foregoing tissue dehydration. The commonly applied tissue dehydration medium is ethanol, which also can markedly impair GFP fluorescence. Screening for a substitute also for ethanol we found that tetrahydrofuran (CAS 109-99-9) is a more GFP-friendly dehydration medium than ethanol, providing better tissue transparency obtained by successive clearing. Combined, tetrahydrofuran and dibenzyl ether allow dehydration and chemical clearing of even delicate samples for UM, confocal microscopy, and other microscopy techniques.  相似文献   

10.
Scanning electron microscopy was used to examine cryofracture surfaces of ventricular myocardium from glutaraldehyde fixed rat and rabbit hearts subjected to intravascular injection of polymerizing acrylic resin. This allowed simultaneous observation of morphological features of cardiac muscle cells and the functional state of their associated small blood vessels. Because the resin injected to identify capillaries accessible to flow might be soluble in commonly used tissue dehydrating agents, alternative preparation methods using the cryoprotectants dimethylsulfoxide (DMSO) and glycerol were investigated. Provided a high performance backscattered electron detector and simple environmental cell were used to abolish specimen charging and circumvent potential instrument contamination, immersion in 2.82 M DMSO for 12 hr prior to cryofracture and freeze-drying gave the best results. The SEM appearance of specimens dehydrated in this way differed little from that of specimens prepared by ethanol dehydration and freeze-drying or by acetone dehydration and critical-point drying. Tissue shrinkage was 26.5 +/- 9.4%, comparable to that found after standard methods using solvent dehydration and critical-point drying.  相似文献   

11.
Scanning electron microscopy was used to examine cryofracture surfaces of ventricular myocardium from glutaraldehyde fixed rat and rabbit hearts subjected to intravascular injection of polymerizing acrylic resin. This allowed simultaneous observation of morphological features of cardiac muscle cells and the functional state of their associated small blood vessels. Because the resin injected to identify capillaries accessible to flow might be soluble in commonly used tissue dehydrating agents, alternative preparation methods using the cryoprotectants dimethylsulfoxide (DMSO) and glycerol were investigated. Provided a high performance backscattered electron detector and simple environmental cell were used to abolish specimen charging and circumvent potential instrument contamination, immersion in 2.82 M DMSO for 12 hr prior to cryofracture and freeze-drying gave the best results. The SEM appearance of specimens dehydrated in this way differed little from that of specimens prepared by ethanol dehydration and freeze-drying or by acetone dehydration and critical-point drying. Tissue shrinkage was 26.5 ± 9.4%, comparable to that found after standard methods using solvent dehydration and critical-point drying.  相似文献   

12.
Eukaryotic serine racemase (SR) is a pyridoxal 5′-phosphate enzyme belonging to the Fold-type II group, which catalyzes serine racemization and is responsible for the synthesis of D-Ser, a co-agonist of the N-methyl-d-aspartate receptor. In addition to racemization, SR catalyzes the dehydration of D- and L-Ser to pyruvate and ammonia. The bifuctionality of SR is thought to be important for D-Ser homeostasis. SR catalyzes the racemization of D- and L-Ser with almost the same efficiency. In contrast, the rate of L-Ser dehydration catalyzed by SR is much higher than that of D-Ser dehydration. This has caused the argument that SR does not catalyze the direct D-Ser dehydration and that D-Ser is first converted to L-Ser, then dehydrated. In this study, we investigated the substrate and solvent isotope effect of dehydration of D- and L-Ser catalyzed by SR from Dictyostelium discoideum (DdSR) and demonstrated that the enzyme catalyzes direct D-Ser dehydration. Kinetic studies of dehydration of four Thr isomers catalyzed by D. discoideum and mouse SRs suggest that SR discriminates the substrate configuration at C3 but not at C2. This is probably the reason for the difference in efficiency between L- and D-Ser dehydration catalyzed by SR.  相似文献   

13.
A thermochemical model for describing the transfer of water from the protein phase to the organic solvent liquid phase and for determining how the solvation ability of organic solvents affects this process was developed. Enthalpy changes on the interaction of dried and hydrated human serum albumin (HSA) with hydrophilic organic solvents (dimethyl sulfoxide, formamide, ethanol, methanol and acetic acid) and water were measured by isothermal calorimetry at 25 °C. The initial hydration level of human serum albumin was varied in the entire water content range from 0–30 % [g water/g HSA]. The dependence of the interaction enthalpies on the initial water content is complex. The interaction enthalpies of the dried HSA with organic solvents are exothermic. At low water contents (less than 0.1 g/g), there is a sharp increase in the interaction enthalpy values. At the highest water contents (more than 0.2 g/g), the interaction enthalpies are endothermic for acetic acid and formamide and exothermic for DMSO, methanol, and ethanol. These thermochemical data were analyzed in conjunction with the results for the water adsorption in organic solvents to calculate the molar enthalpies of dehydration of HSA in organic liquids. It was found that the dehydration enthalpy changes may be endothermic or exothermic depending on the initial water content and the water solvation enthalpy value. From the results obtained, it can be concluded that: (i) only the solvation of water by hydrophilic organic solvent determines the changes in the dehydration enthalpy values, and (ii) the data for the enthalpies of solvation of water by the solvent at infinite dilution reflect this effect.  相似文献   

14.
Glycol methacrylate (GMA), a water and ethanol miscible plastic, was introduced to histology as an embedding medium for electron microscopy. This medium may be made soft enough for cutting thick sections for routine light microscopy by altering its composition. A procedure for the infiltration, polymerization, and sectioning of animal tissues in GMA for light microscopy is presented which is no more complex than paraffin techniques and which has a number of advantages: (I) The GMA medium is compatible with both aqueous fixatives (formaldehyde, glutaraldehyde, Bouin's, and Zenker's) and non-aqueous fixatixes (Carnoy's, Newcomer's, ethanol, and acetone). (2) Undue solvent extraction of the tissue is avoided because adequate dehydration occurs during infiltration of the embedding medium. Separate dehydration and clearing of the tissue prior to embedding is eliminated. (3) When polymerized, the supporting matrix is firm enough that hard and soft tissues adjacent to one another may be sectioned without distortion. (4) Thermal artifact is reduced to a minimum during polymerization because the temperature of the tissue may be maintained at 0-4 C from fixation through ultraviolet light polymerization of the embedding medium. (5) Shrinkage during polymerization of the embedding medium is minimized by prepolymerization of the medium before use. (6) Sections may be easily cut using conventional steel knives and rotary microtomes at a thickness of 0.5 to 3.0 microns, thus improving resolution compared with routinely thicker paraffin sections. (7) The polymerized GMA medium is porous enough so that staining, auto radiography, and other histological procedure are done without removal of the embedding medium from the sections. A list of these stains and related procedures are included. (8) Enzyme digestion of ultra thin sections of tissue embedded in GMA is common in electron microscopic cyto chemistry. me same digestion techniques appear compatible with the thicker seaions used in light microscopy.  相似文献   

15.
Consistency in gold chloride staining is essential for anatomical analysis of sensory nerve endings. The gold chloride stain for this purpose has been modified by many investigators, but often yields inconsistent staining, which makes it difficult to differentiate structures and to determine nerve ending distribution in large tissue samples. We introduce additional steps and major changes to the modified Gairns’ protocol. We controlled the temperature and mixing rate during tissue staining to achieve consistent staining and complete solution penetration. We subjected samples to sucrose dehydration to improve cutting efficiency. We then exposed samples to a solution containing lemon juice, formic acid and paraformaldehyde to produce optimal tissue transparency with minimal tissue deformity. We extended the time for gold chloride impregnation 1.5 fold. Gold chloride was reduced in the labrum using 25% formic acid in water for 18 h and in the capsule using 25% formic acid in citrate phosphate buffer for 2 h. Citrate binds gold nanoparticles, which minimizes aggregation in the tissue. We stored samples in fresh ultrapure water at 4° C to slow reduction and to maintain color contrast in the tissue. Tissue samples were embedded in Tissue Tek and sectioned at 80 and 100 μm instead of using glycerin and teasing the tissue apart as in Gairns’ modified gold chloride method. We attached sections directly to gelatin subbed slides after sectioning with a cryostat. The slides then were processed and coverslipped with Permount. Staining consistency was demonstrated throughout the tissue sections and neural structures were clearly identifiable.  相似文献   

16.
A statement is given of the advantages of this special technic and its place in embryological investigations, including directions for selecting the proper stages in collecting conifer cones and ovules, their methods of dissection from living material and their preservation for later dissection. The choice of dissecting microscopes and dissecting instruments, as well as directions for staining embryos with phloxine which may be combined with slow dehydration in glycerin, or for staining with Delafield's or Heidenhain's hematoxylin which may be followed by the glycerin dehydration are described. Glycerin affords a convenient break for a temporary stopping place in this technic.

Directions are given for transfer from glycerin thru 95% and absolute ethyl alcohol into other solvents such as diaphane solvent, essence of euparel or an easily prepared sandarac solvent. Other mounting media which have been used for conifer embryos are discussed—glycerin jelly, Venetian turpentine and Canada balsam—emphasizing the special advantages found in the media employing sandarac.  相似文献   

17.
A quick-freeze, rapid-dry method for processing unfixed tissue for electron microscopy has been developed. The technique employs freezing on a cryogenchilled metal surface and drying in a cryosorption vacuum apparatus that allows osmium-vapor fixation and epoxy-resin embedment under high vacuum. Liver, kidney, bone marrow, and monolayer cultures of ventricular myocytes were selected as tissue specimens representing a wide range of physical properties, to demonstrate the practical aspects of achieving good ultrastructural morphology by freeze drying. A comparison was made between freeze drying and conventional processing using aldehyde fixation and alcohol dehydration. The preservation of cellular ultrastructure achieved by freeze drying allowed the identification of specific cell types within each specimen. Membranous organelles were well preserved, surrounded by cytoplasmic ground substance devoid of ice crystal damage. Electron-dense material was observed within the rough endoplasmic reticulum and Golgi cisternae and vesicles of frozen-dried, but not conventionally processed cells. This suggests the preservation by freeze drying of cytoplasmic components otherwise extracted from the cell by solvent exposure.  相似文献   

18.
Sample flow switching techniques on microfluidic chips   总被引:1,自引:0,他引:1  
This paper presents an experimental investigation into electrokinetically focused flow injection for bio-analytical applications. A novel microfluidic device for microfluidic sample handling is presented. The microfluidic chip is fabricated on glass substrates using conventional photolithographic and chemical etching processes and is bonded using a high-temperature fusion method. The proposed valve-less device is capable not only of directing a single sample flow to a specified output port, but also of driving multiple samples to separate outlet channels or even to a single outlet to facilitate sample mixing. The experimental results confirm that the sample flow can be electrokinetically pre-focused into a narrow stream and guided to the desired outlet port by means of a simple control voltage model. The microchip presented within this paper has considerable potential for use in a variety of applications, including high-throughput chemical analysis, cell fusion, fraction collection, sample mixing, and many other applications within the micro-total-analysis systems field.  相似文献   

19.
Modern acrylics for post-embedding immunostaining techniques   总被引:9,自引:0,他引:9  
We describe two methods for rapid processing of biological tissues into LR White acrylic plastic. Both methods make use of LR White's compatibility with small amounts of water, enabling non-osmicated tissue to be only partially dehydrated before infiltration with the plastic, a procedure that improves the sensitivity of post-embedding immunocytochemistry. In addition, both methods are designed to reduce the time for which tissue is exposed to the damaging influence of the plastic monomer, which can cause extraction and sudden shrinkage. The tissue example used in the first method is immersion-fixed, surgically removed human pituitary which, by virtue of its thorough fixation, can be processed quickly at 50 degrees C using catalytic polymerization at room temperature. The concentration of the catalyst is critically set to prevent the temperature rising above 60 degrees C in the tissue blocks. Penetration of immunoperoxidase reagents into 330-nm LR White sections is demonstrated and possible modes of action are discussed. When "lightly" fixed tissue is processed as above, serious polymerization artifacts can result from autocatalysis. A second method, based on the first but employing slower polymerization at 0 degrees C, has therefore been developed. The high level of fine structure that can be retained using this method is illustrated by the demonstration of the trans-tubular Golgi in perfusion-fixed kidney of rat. Biotinylated lectin is localized to cells of the kidney proximal tubule with streptavidin-colloidal gold, to illustrate tissue reactivity. In a second example, the structure of the bacterial cell envelope is shown to be similar in appearance after partial dehydration and LR White embedding to that seen after progressive lowering of temperature, dehydration, and Lowicryl embedding.  相似文献   

20.
A continuous flow device utilizing a Clark oxygen electrode was constructed; this device had a dead time and resolution of 1 ms. Mixing was tested by observing the neurtralization of acid with base, and at the maximal flow rate, the mixing was 94% complete within 1 ms and better than 98% complete within 2 ms after initial mixing. Observation o of the oxygenation of hemoglobin gave data which agreed with previous data obtained by a stopped-flow optical experiment. The respiration of phosphorylating submitochondrial particles was measured utilizing this device. The burst of respiration in submitochondrial particles was triphasic, with a very rapid burst lasting some 60 ms, followed by a longer burst of respiration lasting more than 4 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号