首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burkitt's lymphoma is invariably associated with chromosomal translocations that juxtapose the c-myc proto-oncogene with regulatory elements of the immunoglobulin heavy (IgH) or light chain loci resulting in the deregulation of c-myc expression. However, the enhancer elements mediating c-myc deregulation in vivo remain largely unidentified. To investigate the role of the IgH 3'-enhancers in c-myc deregulation, we used gene targeting to generate knock-in mice in which four DNase I hypersensitive regions from the murine IgH 3'-region were integrated into the 5'-region of the c-myc locus. The IgH 3'-enhancers induced the up-regulation of c-myc expression specifically in B cells of IgH-3'-E-myc mice. After approximately 10 months, the mice developed a Burkitt-like B cell lymphoma with the phenotype of B220+, IgM+, and IgD(low). Analysis of immunoglobulin gene rearrangements indicated that the lymphoma cells were of clonal origin. The presence of a rapidly expanding population of B cells in the spleen and bone marrow of young knock-in mice at 2-4 months of age was observed. Premalignant splenic B cells of knock-in mice showed higher spontaneous and induced apoptosis; however, malignant B cells were more resistant to apoptosis. The p53-ARF-Mdm2 pathway was disabled in half of the lymphomas examined, in most cases through Mdm2 overexpression. Although c-myc expression was increased in premalignant B cells, the promoter shift from P2 to P1 was observed only in malignant B cells. Our studies demonstrate that the IgH 3'-enhancers play an important role in c-myc deregulation and B cell lymphomagenesis in vivo.  相似文献   

2.
3.
4.
5.
c-myc oncogene is implicated in tumorigenesis of many cancers, including breast cancer. Although c-myc is a well-known estrogen-induced gene, its promoter has no estrogen-response element, and the underlying mechanism by which estrogen induces its expression remains obscure. Recent genome-wide studies by us and others suggested that distant elements may mediate estrogen induction of gene expression. In this study, we investigated the molecular mechanism by which estrogen induces c-myc expression with a focus on these distal elements. Estrogen rapidly induced c-myc expression in estrogen receptor (ER)-positive breast cancer cells. Although estrogen had little effect on c-myc proximal promoter activity, it did stimulate the activity of a luciferase reporter containing a distal 67-kb enhancer. Estrogen induction of this luciferase reporter was dependent upon both a half-estrogen response element and an activator protein 1 (AP-1) site within this enhancer, which are conserved across 11 different mammalian species. Small interfering RNA experiments and chromatin immunoprecipitation assays demonstrated the necessity of ER and AP-1 cross talk for estrogen to induce c-myc expression. TAM67, the AP-1 dominant negative, partially inhibited estrogen induction of c-myc expression and suppressed estrogen-induced cell cycle progression. Together, these results demonstrate a novel pathway of estrogen regulation of gene expression by cooperation between ER and AP-1 at the distal enhancer element and that AP-1 is involved in estrogen induction of the c-myc oncogene. These results solve the long-standing question in the field of endocrinology of how estrogen induces c-myc expression.  相似文献   

6.
7.
8.
9.
10.
Class II major histocompatibility complex (MHC) gene expression has been studied in an Abelson virus-transformed pre-B cell line R8, and its Ia-negative variant R8205. These variant cells contained barely detectable levels of RNA specific for all class II genes, including the nonpolymorphic invariant chain gene (Ii), and did not express cell surface Ia. Fusion of this murine Ia-negative cell line to the human Ia-positive Raji cell produced an interspecies hybridoma that expressed the murine Ia. These data are further evidence for the existence of trans-acting factors that can regulate class II gene expression. Furthermore, the T cell-derived lymphokine B cell stimulatory factor 1 (BSF-1) induced expression of class II genes in the R8205 cells. Exposure of R8205 cells to an antibody that has been shown to mimic BSF-1 activity on normal B cells also resulted in expression of class II genes. These data demonstrate that three distinct signals--a lymphokine, an alloantibody binding to membrane structures, and an interspecies trans-acting factor--can induce expression of class II genes.  相似文献   

11.
12.
13.
14.
15.
B cell activation is associated with a marked transient rise in expression of the c-myc proto-onco-gene. A unique opportunity to examine the effects of constitutive c-myc expression upon B cell function is provided by transgenic mice in which the c-myc oncogene is regulated by the enhancer (E mu) from the immunoglobulin locus (E mu-myc mice). We have examined the immunologic competence of B cells from E mu-myc mice both in vitro and in vivo. Upon stimulation, many E mu-myc B cells can proliferate to form clones most of which contain antibody-forming cells. However, the frequency of responsive B cells from E mu-myc donors is only about 30% that of B cells from normal littermates. Thus, enforced myc expression is not sufficient to block the differentiation of all B cells, but a much larger fraction of the immunoglobulin-bearing cells from E mu-myc mice are incompetent. Upon immunization, E mu-myc mice mounted specific antibody responses, although some responses were delayed. Isotype switching can occur, since we observed hemolytic plaques of both IgM and IgG type and detected specific antibody of both classes in the serum. Moreover, the serum from nonimmunized E mu-myc mice contained normal levels of both IgM and IgG. Thus constitutive expression of the c-myc gene appears to retard B cell differentiation, but does not grossly impair immunologic function in the intact animal.  相似文献   

16.
Transforming growth factor-beta (TGF-beta) is a potent negative regulator of normal human B cell growth mediated by exogenous signals, including IL-2 and low m.w. B cell growth factor 12 kDa (BCGF-12 kDa). In the present study, we investigated the regulatory linkage between viral or nonviral transformation of human B cells and the growth inhibitory effects of TGF-beta 1. A panel of EBV+ and EBV- B cell lines, derived either by in vitro EBV B cell transformation, or from cases of lymphoma was used to quantitate the negative growth effects of TGF-beta 1. The proliferative response of three EBV- B cell lines to rBCGF-12 kDa or serum was inhibited by low concentrations of TGF-beta 1 (0.2-0.5 ng/ml for 50% maximal effect), as measured by tritiated thymidine uptake and viable cellular recovery. In contrast, rBCGF-12 kDa or serum mediated proliferation of three EBV+ B cell lines was refractory to the growth inhibitory effects of TGF-beta 1. In an attempt to understand the mechanism(s) for this differential growth control in EBV+ and EBV- B cells, we studied the expression of TGF-beta 1, c-myc, and TGF-beta 1 receptors. No correlation was observed between the expression of TGF-beta 1 or c-myc gene and growth inhibition by TGF-beta 1 in the cell lines studied. Our results indicate that sensitivity or resistance to TGF-beta 1 correlated with the presence or absence (loss) of high affinity receptors for TGF-beta 1. EBV- B cell lines expressed levels of high affinity receptors similar to those found on activated normal B or T cells. In contrast, EBV+ B cell lines showed no detectable high affinity receptors. Chemical cross-linking studies with a bifunctional reagent, dissuccinimidyl suberate revealed a normal expression of type I (65-70 kDa), type II (85-90 kDa), and type III (280-300 kDa) TGF-beta 1 high affinity receptors on EBV- B cell lines. In contrast, EBV+ B cell lines did not express type I and type II receptors, whereas type III receptors were expressed but could not be inhibited by unlabeled TGF-beta 1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号