首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Exosomes are the most extensively characterized class of secreted membrane vesicles that carry proteins and RNAs for intercellular communication. They are increasingly seen as possible alternatives to liposomes as drug delivery vehicles. Like liposomes, they could deliver their cargo across the plasma membrane and provide a barrier against premature transformation and elimination. In addition, these naturally-occurring secreted membrane vesicles are less toxic and better tolerated in the body as evidenced by their ubiquitous presence in biological fluids, and have an intrinsic homing ability. They are also amenable to in vivo and in vitro loading of therapeutic agents, and membrane modifications to enhance tissue-specific homing. Here we propose human mesenchymal stem cells as the ideal cell source of exosomes for drug delivery. Mesenchymal stem cell transplantation for various disease indications has been extensively tested and shown to be safe in numerous clinical trials. These cells are also prolific producers of immunologically inert exosomes. Immortalization of these cells does not compromise the quantity or quality of exosome production, thus enabling infinite and reproducible exosome production from a single cell clone.  相似文献   

2.
Exosomes are small vesicles of endosomal origin that can be released by many different cells to the microenvironment. Exosomes have been shown to participate in the immune system, by mediating antigen presentation. We have recently shown the presence of both mRNA and microRNA in exosomes, specifically in exosomes derived from mast cells. This RNA can be transferred between one mast cell to another, most likely through fusion of the exosome to the recipient cell membrane. The delivered RNA is functional, as the mRNA can lead to translation of new proteins in a recipient cell. The RNA shuttled between cells via exosomes is called esRNA. We propose that several types of exosomes may exist, and that an additional function of exosomes is to communicate to neighbouring cells through delivery of RNA-signals.Key words: esRNA, exosomes, microRNA, mRNA, cell communication, signalling  相似文献   

3.
Exosomes are mobile extracellular vesicles with a diameter 40 to 150 nm. They play a critical role in several processes such as the development of cancers, intercellular signaling, drug resistance mechanisms, and cell-to-cell communication by fusion onto the cell membrane of recipient cells. These vesicles contain endogenous proteins and both noncoding and coding RNAs (microRNA and messenger RNAs) that can be delivered to various types of cells. Furthermore, exosomes exist in body fluids such as plasma, cerebrospinal fluid, and urine. Therefore, they could be used as a novel carrier to deliver therapeutic nucleic-acid drugs for cancer therapy. It was recently documented that, hypoxia promotes exosomes secretion in different tumor types leading to the activation of vascular cells and angiogenesis. Cancer cell-derived exosomes (CCEs) have been used as prognostic and diagnostic markers in many types of cancers because exosomes are stable at 4°C and −70°C. CCEs have many functional roles in tumorigenesis, metastasis, and invasion. Consequently, this review presents the data about the therapeutic application of exosomes and the role of CCEs in cancer invasion, drug resistance, and metastasis.  相似文献   

4.
Cellular communication can be mediated by the exchange of biological information, mainly in the form of proteins and RNAs. This can occur when extracellular vesicles, such as exosomes, secreted by a donor cell are internalized by an acceptor cell. Exosomes bear specific repertoires of proteins and RNAs, indicating the existence of mechanisms that control the sorting of molecules into them. Knowledge about loadings and processes and mechanisms of cargo sorting of exosomes is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis. In this review, we will discuss the molecular mechanisms associated with exosome secretion and their specific cargo sorting, with special attention to the sorting of RNAs and proteins, and thus the outcome and the emerging therapeutic opportunities of the communication between the exosome-producer and recipient cells.  相似文献   

5.
6.
7.
Exosomes are small lipid bilayer-enclosed 30–140 nm diameter vesicles formed from endosomes. Exosomes are secreted by various cell types including endothelial cells, immune cells and other cardiovascular tissues, and they can be detected in plasma, urine, cerebrospinal fluid, as well as tissues. Exosomes were initially regarded as a disposal mechanism to discard unwanted materials from cells. Recent studies suggest that exosomes play an important role in mediating of intercellular communication through the delivery and transport of cellular components such as nucleic acids, lipids, and proteins and thus regulate cardiovascular disease. Further, the underlying mechanisms by which abnormally released exosomes promote cardiovascular disease are not well understood. This review highlights recent studies involving endothelial exosomes, gives a brief overview of exosome biogenesis and release, isolation and identification of exosomes, and provides a contemporary understanding of the endothelial exosome pathophysiology and potential therapeutic strategies.  相似文献   

8.

Background

Exosomes are nanovesicles actively secreted by potentially all cell types, including tumour cells, with the primary role of extracellular systemic communication mediators, both at autocrine and paracrine levels, at short and long distances. Recently, different studies have used exosomes as a delivery system for a plethora of different molecules, such as drugs, microRNAs and proteins. This has been made possible thanks to the simplicity in exosomes engineering, their great stability and versatility for applications in oncology as well as in regenerative medicine.

Scope of review

The aim of this review is to provide information on the state-of-the-art and possible applications of engineered exosomes, both for cargo and specific cell-targeting, in different pathologies related to the musculoskeletal system.

Major conclusions

The use of exosomes as therapeutic agents is rapidly evolving, different studies explore drug delivery with exosomes using different molecules, showing an enormous potential in various research fields such as oncology and regenerative medicine.

General significance

However, despite the significant progress made by the different studies carried out, currently, the use of exosomes is not a therapeutic reality for the considerable difficulties to overcome.  相似文献   

9.
Exosomes are small microvesicles released by cells that efficiently transfer their molecular cargo to other cells, including tumor. Exosomes may pass the blood–brain barrier and have been demonstrated to deliver RNAs contained within to brain. As they are non-viable, the risk profile of exosomes is thought to be less than that of cellular therapies. Exosomes can be manufactured at scale in culture, and exosomes can be engineered to incorporate therapeutic miRNAs, siRNAs, or chemotherapeutic molecules. As natural biological delivery vehicles, interest in the use of exosomes as therapeutic delivery agents is growing. We previously demonstrated a novel treatment whereby mesenchymal stromal cells were employed to package tumor-suppressing miR-146b into exosomes, which were then used to reduce malignant glioma growth in rat. The use of exosomes to raise the immune system against tumor is also drawing interest. Exosomes from dendritic cells which are antigen-presenting, and have been used for treatment of brain tumor may be divided into three categories: (1) exosomes for immunomodulation-based therapy, (2) exosomes as delivery vehicles for anti-tumor nucleotides, and (3) exosomes as drug delivery vehicles. Here, we will provide an overview of these three applications of exosomes to treat brain tumor, and examine their prospects on the long road to clinical use.  相似文献   

10.
11.
Exosomes are nano-sized bioactive vesicles of 30–150 nm in diameter. They are secreted by exocytosis of nearly all type of cells in to the extracellular fluid. Thereby, they can be found in many biological fluids. Exosomes regulate intracellular communication between cells via delivery of their cargo which include lipids, proteins, and nucleic acid. Many desirable features of exosomes made them promising candidates in several therapeutic applications. In this review, we discuss the use of exosomes as diagnostic tools and their possible biomedical applications. Additionally, current techniques used for isolation, purification, and characterization of exosomes from both biological fluids and in vitro cell cultures were discussed.  相似文献   

12.
外泌体(exosomes)是细胞分泌的囊泡,在细胞与细胞之间通信中发挥重要作用。由于其固有的长距离通信能力和出色的生物相容性而具有很大的潜力作为药物递送载体,尤其适合递送蛋白质、核酸、基因治疗剂等治疗药物。许多研究表明外泌体可以有效地将许多不同种类的货物递送至靶细胞,因此,它们常被作为药物载体用于治疗。对外泌体作为药物递送系统中面临的外泌体分离,药物装载和靶向治疗应用的进展与挑战作一介绍,以期更好为外泌体药物递送系统开发提供新思路。  相似文献   

13.

Background

Human cells release nano-sized vesicles called exosomes, containing mRNA, miRNA and specific proteins. Exosomes from one cell can be taken up by another cell, which is a recently discovered cell-to-cell communication mechanism. Also, exosomes can be taken up by different types of cancer cells, but the potential functional effects of mast cell exosomes on tumor cells remain unknown.

Methods and results

Exosomes were isolated from the human mast cell line, HMC-1, and uptake of PKH67-labelled exosomes by the lung epithelial cell line, A549, was examined using flow cytometry and fluorescence microscopy. The RNA cargo of the exosomes was analyzed with a Bioanalyzer and absence or presence of the c-KIT mRNA was determined by RT-PCR. The cell proliferation was determined in a BrdU incorporation assay, and proteins in the KIT-SCF signaling pathway were detected by Western blot. Our result demonstrates that exosomes from mast cells can be taken up by lung cancer cells. Furthermore, HMC-1 exosomes contain and transfer KIT protein, but not the c-KIT mRNA to A549 cells and subsequently activate KIT-SCF signal transduction, which increase cyclin D1 expression and accelerate the proliferation in the human lung adenocarcinoma cells.

Conclusions

Our results indicate that exosomes can transfer KIT as a protein to tumor cells, which can affect recipient cell signaling events through receptor-ligand interactions.
  相似文献   

14.
Exosomes have a significant impact on tumor survival, proliferation, metastasis, and recurrence. They also open up new therapeutic options and aid in the pathological identification and diagnosis of cancers. Exosomes have been shown in numerous studies to be essential for facilitating cell-to-cell communication. In B-cell hematological malignancies, the proteins and RNAs that are encased by circulating exosomes are thought to represent prospective sources for therapeutic drugs as well as biomarkers for diagnosis and prognosis. Additionally, exosomes can offer a “snapshot” of the tumor and the metastatic environment at any given point in time. In this review study, we concluded that leukemia-derived exosomes could be utilized as prognostic, diagnostic, and therapeutic biomarkers for individuals suffering from leukemia. Moreover, clinical studies have demonstrated that immune cells like dendritic cells create exosomes, which have the ability to activate the immune system against leukemia.  相似文献   

15.
Exosomes are secreted extracellular vesicles that mediate intercellular transfer of cellular contents and are attractive vehicles for therapeutic delivery of bimolecular cargo such as nucleic acids, proteins, and even drugs. Efficient exosome-mediated delivery in vivo requires targeting vesicles for uptake by specific recipient cells. Although exosomes have been successfully targeted to several cellular receptors by displaying peptides on the surface of the exosomes, identifying effective exosome-targeting peptides for other receptors has proven challenging. Furthermore, the biophysical rules governing targeting peptide success remain poorly understood. To evaluate one factor potentially limiting exosome delivery, we investigated whether peptides displayed on the exosome surface are degraded during exosome biogenesis, for example by endosomal proteases. Indeed, peptides fused to the N terminus of exosome-associated transmembrane protein Lamp2b were cleaved in samples derived from both cells and exosomes. To suppress peptide loss, we engineered targeting peptide-Lamp2b fusion proteins to include a glycosylation motif at various positions. Introduction of this glycosylation motif both protected the peptide from degradation and led to an increase in overall Lamp2b fusion protein expression in both cells and exosomes. Moreover, glycosylation-stabilized peptides enhanced targeted delivery of exosomes to neuroblastoma cells, demonstrating that such glycosylation does not ablate peptide-target interactions. Thus, we have identified a strategy for achieving robust display of targeting peptides on the surface of exosomes, which should facilitate the evaluation and development of new exosome-based therapeutics.  相似文献   

16.
Exosomes are small vesicles of endosomal origin that can be released by many different cells to the microenvironment. Exosomes have been shown to participate in the immune system, by mediating antigen presentation. We have recently shown the presence of both mRNA and microRNA in exosomes, specifically in exosomes derived from mast cells. This RNA can be transferred between one mast cell to another, most likely through fusion of the exosome to the recipient cell membrane. The delivered RNA is functional, as the mRNA can lead to translation of new proteins in a recipient cell. The RNA shuttled between cells via exosomes is called esRNA. We propose that several types of exosomes may exist, and that an additional function of exosomes is to communicate to neighboring cells through delivery of RNA-signals.  相似文献   

17.
外泌体是细胞外囊泡的一种,由多囊泡体和细胞膜融合后释放到细胞外。外泌体能递送有功能的分子,包括蛋白质、脂质和核酸给受体细胞,参与细胞间通讯,影响细胞的各种生理与病理功能。近年来,越来越多研究发现,外泌体在病原微生物感染性疾病发病机制中也发挥重要作用。在慢性感染中,外泌体能传播感染性蛋白质和病毒RNA,并改变未感染细胞的功能。同时,这些具有极强免疫原性的蛋白质可向免疫系统递送病原信息,激活免疫系统。本文就外泌体在慢性病原体感染中的相关研究进展进行综述。研究这些机制,可为慢性感染的诊断和治疗提供新的思路。  相似文献   

18.
Exosomes are small membrane vesicles of endosomal origin, which are secreted from a variety of cell types. During the 1980s exosomes were first described as organelles to remove cell debris and unwanted molecules. The discovery that exosomes contain proteins, messenger and microRNAs suggests a role as mediators in cell-to-cell communication. Exosomes can be transported between different cells and influence physiological pathways in the recipient cells. In the present review, we will summarize the biological function of exosomes and their involvement in physiological and pathological processes. Moreover, the potential clinical application of exosomes as biomarkers and therapeutic tools will be discussed.  相似文献   

19.
Exosomes are nanosized membrane-bound vesicles that are released by various cell types and are capable of carrying proteins, lipids and RNAs which can be delivered to recipient cells. Exosomes play a role in intercellular communication and have been described to mediate immunologic information. In this article we report the first isolation and characterization of exosomes from human thymic tissue. Using electron microscopy, particle size determination, density gradient measurement, flow cytometry, proteomic analysis and microRNA profiling we describe the morphology, size, density, protein composition and microRNA content of human thymic exosomes. The thymic exosomes share characteristics with previously described exosomes such as antigen presentation molecules, but they also exhibit thymus specific features regarding surface markers, protein content and microRNA profile. Interestingly, thymic exosomes carry proteins that have a tissue restricted expression in the periphery which may suggest a role in T cell selection and the induction of central tolerance. We speculate that thymic exosomes may provide the means for intercellular information exchange necessary for negative selection and regulatory T cell formation of the developing thymocytes within the human thymic medulla.  相似文献   

20.
外泌体是多种活细胞经过"内吞-融合-外排"等一系列过程主动向胞外分泌的纳米级双层膜结构小囊泡,广泛存在于血液和尿液等生物体液中.因其携带着多种蛋白质、核酸和脂质等生物活性分子,所以外泌体不仅在细胞间物质交换和信息传递中发挥重要作用,而且对疾病诊断、预后预测和治疗管理等均具有提示意义.外泌体的高效提取、分离和完整保存是研...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号