首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complete covalent structure of liver microsomal NADH-cytochrome b5 reductase from steer liver microsomes was determined. Cleavage at methionyl bonds gave 10 peptides accounting for all the residues of the protein. Acid cleavage of the reductase at the Asp-Pro bonds gave three peptides accounting for all the CNBr peptides in the molecule. Subfragmentation of these peptides by chemical and enzymatic cleavage provided overlaps which established all the fragments in an unambiguous sequence of 300 residues, corresponding to Mr 34,110. Limited tryptic digestion cleaved reductase at residues 28 and 119, yielding a preparation having two noncovalently linked peptides having a conformation which binds flavin and retains the structural features essential for NADH-cytochrome b5 activity. A model for the secondary structure of cytochrome b5 reductase is proposed that is based on computer-assisted analysis of the amino acid sequence. In this model the beta-turns are predominant and there is some 25% alpha and 30% beta structure.  相似文献   

2.
The complete amino acid sequence of soluble NADH-cytochrome b5 reductase purified from human erythrocytes was determined. The enzyme, which contained 8 methionine residues, was cleaved by cyanogen bromide. The resulting nine peptides were separated by gel filtration and purified further by high-performance liquid chromatography. The purified peptides were sequenced by automated Edman degradation. Three large CNBr peptides, residues 1-101, 109-151, and 169-231, were further fragmented with trypsin, Staphylococcus aureus V8 protease or a lysyl endopeptidase of Achromobacter lyticus. The peptides obtained from the tryptic digest of citraconylated FAD-depleted apoprotein completed the alignments of the other peptides. The enzyme was composed of 275 amino acid residues. The 4 functionally important cysteine residues were located in the COOH-terminal portion. The molecular weight of the protein was calculated to be 31,260 without FAD. A prediction of the secondary structure was made by the method of Chou and Fasman. The protein was hydrophilic as a whole (43% polarity), but some regions were rich in hydrophobic residues. From the sequence homology of this enzyme with the pyridine nucleotide-binding sites of other flavoproteins, three candidates for the FAD and NADH-binding domains were suggested.  相似文献   

3.
The NH2-terminal blocking group of the membrane-binding domain of NADH-cytochrome b5 reductase has been deduced as myristic (n-tetradecanoyl) acid. This fatty acid was identified by gas chromatography of the digest of the NH2-terminal tetrapeptide of cytochrome b5 reductase. Fast atom bombardment and direct chemical ionization mass spectroscopy of the underivatized NH2-terminal tetrapeptide confirmed the presence of myristic acid, identified its linkage to the NH2 terminus and established CH3(CH2)12-CO-Gly-Ala-Gln-Leu as the NH2-terminal sequence. In addition, the complete amino acid sequence of the membrane-binding domain of cytochrome b5 reductase is also reported. The finding of a myristic acyl chain on the NH2-terminal segment, comprised of hydrophobic amino acid residues, implies that the function of the myristate group may be other than simply to anchor the reductase to the microsomal membrane. This post-translational modification, presumably in the endoplasmic reticulum, may selectively stabilize a particular membrane structure and orientation that optimally facilitates electron transport on the cytosolic surface of this membrane organelle.  相似文献   

4.
Amino acid sequence of NADH-cytochrome b5 reductase of human erythrocytes   总被引:4,自引:0,他引:4  
The amino acid sequence of soluble NADH-cytochrome b5 reductase purified from normal human erythrocytes was determined as one approach to understand the hereditary disease of a deficiency of this enzyme. The protein is hydrophilic as a whole, but two regions, from Phe-36 to Ile-71 and from Met-231 to Phe-275, were found to be highly hydrophobic. The sequence of the latter region is particularly unique, and rich in proline (20%). The sequence of the amino-terminal region was very similar to the partial sequences of the corresponding regions of the enzymes from pig and steer liver microsomes.  相似文献   

5.
6.
The cDNA encoding solubilized porcine liver NADH-cytochrome b5 reductase catalytic domain (Pb5R) was cloned and overexpressed in Escherichia coli. A highly conserved His49 and a C-terminal Phe272 of Pb5R, which are located near the isoalloxazine moiety of the FAD, were systematically modulated by site-directed mutagenesis. Large structural change was not detected on the absorption and circular dichroism spectra of mutant proteins. Drastic changes in enzymatic properties were not observed, but the apparent Km value for soluble form of porcine liver cytochrome b5 (Pb5) was affected by the substitutions of His49 with glutamic acid and with lysine, deletion of C-terminal Phe272, and addition of Gly273. The values of the catalytic constant (kcat) were obviously decreased by the substitution of His49 with glutamic acid or the addition of Gly273. In these two mutants, the rate for reduction of FAD was decreased, and the rate for autoxidation of reduced FAD was increased. These results showed that His49 and C-terminal carboxyl group in Pb5R are not critical for the electron transfer to Pb5, but the electrostatic environmental changes at these positions could affect the recognition of Pb5 and modulate the catalytic function of the enzyme by changing the stability of reduced FAD.  相似文献   

7.
A NADH-cytochrome c reductase activity was increased upon mitogen stimulation of human lymphocytes. The activity was not inhibited by antimycin A or rotenone but was specifically inhibited by antibodies elicited against rat liver NADH-cytochrome b5 reductase or cytochrome b5. The activity was linear with cellular homogenates up to 5.2 × 106 cells/ml and had abroad pH optimum of 7.7. The presence of 3-methylcholanthrene in mitogen stimulation media had no effect on the NADH-cytochrome c reductase activity but differentially induced the benzo(a)pyrene hydroxylase (AHH) activity. The reductase activity was present in nonstimulated cells and appears not to be significantly increased in activity per cell upon mitogen-stimulation of the peripheral lymphocyte.  相似文献   

8.
9.
NADH-cytochrome b5 reductase (b5R) is a member of a flavoenzyme family of dehydrogenases-electron transferases that participates in the transfer of electrons from the NADH generated in glycolysis to cytochrome b5. b5R is involved in the steady-state reduction of methemoglobin to hemoglobin in erythrocytes and is also involved in lipid metabolism in other cell types. In a search for mutations of the b5R gene in two unrelated African-American families, a high-frequency polymorphism was detected in the propositi from both families, as well as unrelated normal controls, consisting of a C-to-G transversion in exon 5 that changes threonine to serine at codon 116 (T116S). This is the first polymorphism found in the b5R gene. Using allele-specific PCR on the two propositi, their family members, and unselected populations of African-American, Caucasian, Asian, Indo-Aryan, and Arabic individuals, the C/G polymorphism was found in 26 of 112 African-American chromosomes (allele frequency = 0.23), but not in 108 Caucasian, 46 Asian, 44 Indo-Aryan, or 14 Arabic chromosomes. In preliminary studies, this polymorphism did not correlate with b5R enzyme activity or cause any disease phenotype. It remains to be determined whether this African-specific polymorphism that apparently originated recently in human evolution provides any special survival advantage. Received: 11 April 1996 / Revised: 13 May 1996, 9 August 1996  相似文献   

10.
11.
A water-soluble carbodiimide has been used to promote the formation of amide bonds between carboxyl residues on cytochrome b5 and lysyl residues on cytochrome b5 reductase. The visible and UV absorption spectrum of the purified cross-linked complex was identical with the sum of the spectra of the individual enzymes, and the average apparent molecular weight of the complex, determined by sodium dodecyl sulfate-gel electrophoresis, was within 12% of the sum of the apparent molecular weights of the two monomeric enzymes, indicating that the cross-linked derivative was a dimer containing one molecule each of cytochrome b5 and cytochrome b5 reductase. When reconstituted into phospholipid vesicles, the amphipathic derivative showed substantially reduced Vmax values with the soluble electron acceptors potassium ferricyanide, cytochrome b5 heme peptide and cytochrome c, and with the membrane-bound acceptors amphipathic cytochrome b5 and stearyl-CoA desaturase. The soluble catalytic fragment of the derivative, produced by limited digestion with subtilisin Carlsberg, showed similar decreases in Vmax values with the above soluble acceptors. In contrast, intradimer electron transfer in the soluble fragment, measured by stopped flow spectrophotometry at 2 degrees C was very efficient. Ninety per cent of the cytochrome b5 in the derivative was reduced with a first order rate constant of 51 s-1 upon the addition of NADH; the transfer of electrons from NADH to the reductase FAD prosthetic group, which is known to be the rate-limiting step in the reductase reaction mechanism, proceeded with an apparent rate constant of 57 s-1 under these conditions. These kinetic data show that the enzymes in the complex are cross-linked together at the surfaces involved in protein-protein contacts during electron transfer in an orientation similar to that assumed during electron transfer between the free proteins.  相似文献   

12.
The soluble catalytic domain of NADH-cytochrome b5 reductase was radiolabeled with [14C]N-ethylmaleimide. Reaction for a limited time resulted in incorporation of 0.41 eq of N-ethylmaleimide and loss of 36% of the enzyme activity. Chromatography on a 5'-ADP affinity column separated the reductase which was modified with N-ethylmaleimide from the unreacted enzyme; the isolated derivative constituted 37% of the total material, was completely inactivated, and contained 1.00 eq of N-ethylmaleimide. Cyanogen bromide cleavage of the derivative demonstrated that radioactivity was limited to a single peptide which contained both Cys-283 and Cys-297. Tryptic hydrolysis of this cyanogen bromide peptide showed that the radioactivity was associated with Cys-283. Automated sequenator analysis confirmed that Cys-283 was the radiolabeled residue. These data demonstrate unambiguously that Cys-283 provides the essential thiol group of cytochrome b5 reductase.  相似文献   

13.
A cDNA for NADH-cytochrome b(5) reductase of Physarum polycephalum was cloned from a cDNA library, and the nucleotide sequence of the cDNA was determined (accession no. AB259870). The DNA of 943 base pairs contains 5'- and 3'-noncoding sequences, including a polyadenylation sequence, and a coding sequence of 843 base pairs. The amino acid sequence (281 residues) deduced from the nucleotide sequence was 25 residues shorter than those of vertebrate enzymes. Nevertheless, the recombinant Physarum enzyme showed enzyme activity comparable to that of the human enzyme. The recombinant Physarum enzyme showed a pH optimum of around 6.0, and apparent K(m) values of 2 microM and 14 microM for NADH and cytochrome b(5) respectively. The purified recombinant enzyme showed a typical FAD-derived absorption peak of cytochrome b(5) reductase at around 460 nm, with a shoulder at 480 nm. These results suggest that the Physarum enzyme plays an important role in the organism.  相似文献   

14.
Recombinant fused protein containing human erythrocyte NADH-cytochrome b5 reductase (cytochrome b5 reductase, EC 1.6.2.2.) was produced in Escherichia coli, which was linked to the NH2 terminus of beta-galactosidase of the vector pUC13 via a recognition sequence of alpha-thrombin. Cleavage of purified fused protein with alpha-thrombin yielded the enzyme whose apparent molecular weight (32,000) was the same as the native enzyme. The amino-acid sequence from Phe-1 to Leu-10 was determined to be identical to that of the authentic enzyme. The purified enzyme showed an identical absorption spectrum and similar catalytic properties to the native enzyme. Establishment of the expression system would make it possible to determine the reaction mechanism of the enzyme.  相似文献   

15.
Site-directed mutagenesis of Thr(66) in porcine liver NADH-cytochrome b(5) reductase demonstrated that this residue modulates the semiquinone form of FAD and the rate-limiting step in the catalytic sequence of electron transfer. The absorption spectrum of the T66V mutant showed a typical neutral blue semiquinone intermediate during turnover in the electron transfer from NADH to ferricyanide but showed an anionic red semiquinone form during anaerobic photoreduction. The apparent k(cat) values of this mutant were approximately 10% of that of the wild type enzyme (WT). These data suggest that the T66V mutation stabilizes the neutral blue semiquinone and that the conversion of the neutral blue to the anionic red semiquinone form is the rate-limiting step. In the WT, the value of the rate constant of FAD reduction (k(red)) was consistent with the k(cat) values, and the oxidized enzyme-NADH complex was observed during the turnover with ferricyanide. This indicates that the reduction of FAD by NADH in the WT-NADH complex is the rate-limiting step. In the T66A mutant, the k(red) value was larger than the k(cat) values, but the k(red) value in the presence of NAD(+) was consistent with the k(cat) values. The spectral shape of this mutant observed during turnover was similar to that during the reduction with NADH in the presence of NAD(+). These data suggest that the oxidized T66A-NADH-NAD(+) ternary complex is a major intermediate in the turnover and that the release of NAD(+) from this complex is the rate-limiting step. These results substantiate the important role of Thr(66) in the one-electron transfer reaction catalyzed by this enzyme. On the basis of these data, we present a new kinetic scheme to explain the mechanism of electron transfer from NADH to one-electron acceptors including cytochrome b(5).  相似文献   

16.
Bovine brain microsomal NADH-cytochrome b5 (cyt. b5) reductase [EC 1.6.2.2] was solubilized by digestion with lysosomes, and purified 8,500-fold with a 20% recovery by procedures including affinity chromatography on 5'-AMP-Sepharose 4B. The purified enzyme showed one band of a molecular weight of 31,000 on polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS). Polyacrylamide gel electrophoresis of the purified enzyme without SDS revealed a major band with a faint minor band, both of which exhibited NADH-cyt. b5 reductase activity. The isoelectric points of these components were 6.0 (major) and 6.3 (minor). The apparent Km values of the purified enzyme for NADH and ferricyanide were 1.1 and 4.2 microM, respectively. The apparent Km value for cyt. b5 was 14.3 microM in 10 mM potassium phosphate buffer (pH 7.5). The apparent Vmax value was 1,190 mumol cyt. b5 reduced/min/mg of protein. The NADH-cyt. b5 reductase activity of the purified enzyme was inhibited by sulfhydryl inhibitors and flavin analogues. Inhibition by phosphate buffer or other inorganic salts of the enzyme activity of the purified enzyme was proved to be of the competitive type. These properties were similar to those of NADH-cyt. b5 reductase from bovine liver microsomes or rabbit erythrocytes, although the estimated enzyme content in brain was about one-twentieth of that in liver (per g wet tissue). An immunochemical study using an antibody to purified NADH-cyt. b5 reductase bovine liver microsomes indicated that NADH-cyt. b5 reductase from brain microsomes is immunologically identical to the liver microsomal enzyme.  相似文献   

17.
18.
Incubation of liposomes prepared by sonication of egg lecithin with the amphipathic form of cytochrome b5 results in the binding of a maximum of 244 molecules of cytochrome b5 per liposomal vesicle. Interactions of the phospholipid with the hydrophobic segment of cytochrome b5 are involved in this binding which does not disrupt the liposome. When a small amount of NADH-cytochrome b5 reductase is bound liposomes simultaneously with cytochrome b5, the two proteins catalyze the reduction of cytochrome c by NADH. A qualitative kinetic analysis reveals that all of the cytochrome b5 interacts with reductase, a result consistent with these protein undergoing translational diffusion in the plane of the membrane. This system and the purified stearyl coenzyme A desaturase provide a model to study the dynamics of protein andlipid interactions in this membrane-bound oxidative sequence.  相似文献   

19.
20.
An antibody preparation elicited against purified, lysosomal-solubilized NADH-cytochrome b5 reductase from rat liver microsomes was shown to interact with methemoglobin reductase of human erythrocytes by inhibiting the rate of erythrocyte cytochrome b5 reduction by NADH. The ferricyanide reductase activity of the enzyme was not inhibited by the antibody, suggesting that the inhibition of methemoglobin reductase activity may be due to interference with the binding of cytochrorme b5 to the flavoprotein. Under conditions of limiting concentrations of flavoprotein, the antibody inhibited the rate of methemoglobin reduction in a reconstituted system consisting of homogeneous methemoglobin reductase and cytochrome b5 from human erythrocytes. This inhibition was due to the decreased level of reduced cytochrome b5 during the steady state of methemoglobin reduction while the rate of methemoglobin reduction per reduced cytochrome b5 stayed constant, suggesting that the enzyme was not concerned with an electron transport between the reduced cytochrome b5 and methemoglobin.An antibody to purified, trypsin-solubilized cytochrome b5 from rat liver microsomes was shown to inhibit erythrocyte cytochrome b5 reduction by methemoglobin reductase and NADH to a lesser extent than microsomal cytochrome b5 preparations from rat liver (trypsin solubilized or detergent solubilized) and pig liver (trypsin solubilized). The results presented establish that soluble methemoglobin reductase and cytochrome b5 of human erythrocytes are immunochemically similar to NADH-cytochrome b5 reductase and cytochrome b5 of liver microsomes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号