首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Myoblast fusion is an intricate process that is initiated by cell recognition and adhesion, and culminates in cell membrane breakdown and formation of multinucleate syncytia. In the Drosophila embryo, this process occurs asymmetrically between founder cells that pattern the musculature and fusion-competent myoblasts (FCMs) that account for the bulk of the myoblasts. The present studies clarify and amplify current models of myoblast fusion in several important ways. We demonstrate that the non-conventional guanine nucleotide exchange factor (GEF) Mbc plays a fundamental role in the FCMs, where it functions to activate Rac1, but is not required in the founder cells for fusion. Mbc, active Rac1 and F-actin foci are highly enriched in the FCMs, where they localize to the Sns:Kirre junction. Furthermore, Mbc is crucial for the integrity of the F-actin foci and the FCM cytoskeleton, presumably via its activation of Rac1 in these cells. Finally, the local asymmetric distribution of these proteins at adhesion sites is reminiscent of invasive podosomes and, consistent with this model, they are enriched at sites of membrane deformation, where the FCM protrudes into the founder cell/myotube. These data are consistent with models promoting actin polymerization as the driving force for myoblast fusion.  相似文献   

3.
Circular visceral muscles of Drosophila are binuclear syncytia arising from fusion of two different kinds of myoblasts: a circular visceral founder cell and one visceral fusion-competent myoblast. In contrast to fusion leading to the somatic body-wall musculature, myoblast fusion for the circular visceral muscles does not result in massive syncytia but instead in syncytia interconnected with multiple cytoplasmic bridges, which differentiate into large web-shaped muscles. Here, we show that these syncytial circular visceral muscles build a gut-enclosing network with the interwoven longitudinal visceral muscles. At the ultrastructural level, during circular visceral myoblast fusion and the first step of somatic myoblast fusion prefusion complexes and electron-dense plaques were not detectable which was surprising as these structures are characteristic for the second step of somatic myoblast fusion. Moreover, we demonstrate that Blown fuse (Blow), a cytoplasmic protein essential for the second step of somatic myoblast fusion, plays a different role in circular visceral myogenesis. Blow is known to be essential for progression beyond the prefusion complex in the somatic mesoderm; however, analysis of blow mutants established that it has a restricted role in stretching and outgrowth of the syncytia in the circular visceral muscles. Furthermore, we also found that in the visceral mesoderm, Blow is expressed in both the fusion-competent myoblasts and circular visceral founders, while expression in the somatic mesoderm is initially restricted to fusion-competent myoblasts. We also demonstrate that different enhancer elements in the first intron of blow are responsible for this distinct expression pattern. Thus, we propose a model for Blow in which this protein is involved in at least two clearly differing processes during Drosophila muscle formation, namely somatic myoblast fusion on the one hand and stretching and outgrowth of circular visceral muscles on the other.  相似文献   

4.
During metamorphosis, the adult muscles of the Drosophila abdomen develop from pools of myoblasts that are present in the larva. The adult myoblasts express twist in the third larval instar and the early pupa and are closely associated with nerves. Growing adult nerves and the twist-expressing cells migrate out across the developing abdominal epidermis, and as twist expression declines, the myoblasts begin to synthesize beta 3 tubulin. There follows a process involving cell fusion and segregation into cell groups to form multinucleate muscle precursors. These bipolar precursors migrate at both ends to find their correct attachment points. beta 3 tubulin expression continues at least until 51 h APF by which time the adult muscle pattern has been established.  相似文献   

5.
6.
7.
8.
9.
In eukaryotes, mitotic cyclins localize differently in the cell and regulate different aspects of the cell cycle. We investigated the relationship between subcellular localization of cyclins A and B and their functions in syncytial preblastoderm Drosophila embryos. During early embryonic cycles, cyclin A was always concentrated in the nucleus and present at a low level in the cytoplasm. Cyclin B was predominantly cytoplasmic, and localized within nuclei only during late prophase. Also, cyclin B colocalized with metaphase but not anaphase spindle microtubules. We changed maternal gene doses of cyclins A and B to test their functions in preblastoderm embryos. We observed that increasing doses of cyclin B increased cyclin B-Cdk1 activity, which correlated with shorter microtubules and slower microtubule-dependent nuclear movements. This provides in vivo evidence that cyclin B-Cdk1 regulates microtubule dynamics. In addition, the overall duration of the early nuclear cycles was affected by cyclin A but not cyclin B levels. Taken together, our observations support the hypothesis that cyclin B regulates cytoskeletal changes while cyclin A regulates the nuclear cycles. Varying the relative levels of cyclins A and B uncoupled the cytoskeletal and nuclear events, so we speculate that a balance of cyclins is necessary for proper coordination during these embryonic cycles.  相似文献   

10.
Pattern formation in the Drosophila embryo   总被引:2,自引:0,他引:2  
Three plausible hypotheses about developmental commitments in the Drosophila embryo propose that: (1) a micromosaic of localized determinants in the egg trigger somatic commitments; (2) monotonic anterior-posterior and dorsal-ventral gradients in the egg specify positions by a series of threshold values; (3) sequential subdivision of the early embryo into 'anterior' or 'posterior' 'middle' or 'end', 'dorsal' or 'ventral', 'odd' or 'even' compartmental domains encodes the somatic commitment in each region in a combinatorial epigenetic code. Evidence in favour of such a combinatorial code includes its capacity to account for major features of transdetermination and for many single and coordinated homoeotic transformations. In particular, both these metaplasias often cause transformations between ectodermal tissues such as antenna and genitalia, whose anlagen lie far apart on the blastoderm fate map. This phenomenon is not naturally explained by monotonic gradient models. In contrast, not only transformation between distant regions of the fate map, but also the observed geometries of compartmental boundaries on the wing, and probable ones in the early embryo, are naturally explained by reaction-diffusion models. These systems form a discrete succession of differently shaped monotonic and nonmonotonic eigenfunction gradient patterns of the same morphogens, as the tissue containing the chemical system changes in size and shape, or in other parameters. The successive mirror symmetries in non-monotonic gradients predict that distant regions of the embryo make similar developmental commitments, and also predict specific classes of pattern mutants forming mirror symmetric structures along the embryo on a variety of length scales. Finally, reaction diffusion systems spontaneously generate transverse gradients of the underlying chemicals when more than one eigenfunction is amplified at once, and therefore specify two-dimensional positional information within domains. Although it is attractive, no feature of the combinatorial code hypothesis is verified. Current data relating to whether the sequential formation of compartmental boundaries actually reflects the commitment of the two isolated 'polyclones' to alternative fates, whether any genes act continuously to maintain disc commitments, and whether homoeotic mutants actually 'switch' disc determined states, are assessed.  相似文献   

11.
Making stripes in the Drosophila embryo   总被引:15,自引:0,他引:15  
The striped pattern of expression of the Drosophila primary pair rule genes is controlled by independent regulatory units that give rise to individual stripes. The different stripes seem to respond in a concentration-dependent manner to the different combinations of maternal and gap protein gradients found along the anterior-posterior axis of the early embryo. Thus, the initial periodicity appears to be generated by putting together a series of nonperiodic events.  相似文献   

12.
13.
Extracellular serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid, local reactions to physiological or pathological cues. The serine protease cascade that triggers the Toll signaling pathway in Drosophila embryogenesis shares several organizational characteristics with those involved in mammalian complement and blood clotting. One of the hallmarks of such cascades is their regulation by serine protease inhibitors (serpins). Serpins act as suicide substrates and are cleaved by their target protease, forming an essentially irreversible 1:1 complex. The biological importance of serpins is highlighted by serpin dysfunction diseases, such as thrombosis caused by a deficiency in antithrombin. Here, we describe how a serpin controls the serine protease cascade, leading to Toll pathway activation. Female flies deficient in Serpin-27A produce embryos that lack dorsal-ventral polarity and show uniform high levels of Toll signaling. Since this serpin has been recently shown to restrain an immune reaction in the blood of Drosophila, it demonstrates that proteolysis can be regulated by the same serpin in different biological contexts.  相似文献   

14.
The thoracic muscles of Drosophila melanogaster can be classified into two classes, the fibrillar and the tubular muscles, on morphological grounds. Histochemical techniques were used to characterize these two classes of muscle according to their content of various enzymes (alpha-glycerophosphate, NAD-dependent isocitrate, malate and succinate dehydrogenases, fumarase, acid phosphatase, adenosine triphosphatase and acetylcholinesterase) and of glycogen. These investigations showed that the two muslces types are histochemically very different and, further, that the morphologically similar tubular muscles are heterogeneous with respect to their enzyme content. In particular, the tergal depressor of the trochanter of the second leg, the largest of the tubular muslces, has considerably less of all the enzymes studied, with the exception of acetylcholinesterase, than all the other tubular muscles examined. The histochemical techniqes were also used to follow the changes in enzyme levels that occur during development of the indirect flight muscle fibres. All the enzymes that are present in adult flight muslces showed an increase in staining intensity throughout muscle development. Some minor differences were observed in the time of appearance and rate of increase of intensity of the different enzymes.  相似文献   

15.
We have examined the mechanisms underlying the setting of myotubes and choice of myotube number in adult Drosophila. We find that the pattern of adult myotubes is prefigured by a pattern of duf-lacZ-expressing myoblasts at appropriate locations. Selective expression of duf-lacZ in single myoblasts emerges from generalized, low-level expression in all adult myoblasts during the third larval instar. The number of founders, thus chosen, corresponds to the number of fibres in a muscle. In contrast to the embryo, the selection of individual adult founder cells during myogenesis does not depend on Notch-mediated lateral inhibition. Our results suggest a general mechanism by which multi-fibre muscles can be patterned.  相似文献   

16.
Bioelectrical potentials were studied from longitudinal muscle fibres of the cockroach proctodeum. The muscle bundle receives a polyaxonal innervation from both anterior and posterior branches of the anterior proctodeal nerve. Evoked post-synaptic potentials consisted of two independent, but similar components generated through the two branches. An action potential in the muscle fibre could be generated with single branch stimulation, and more readily by co-operation of excitation in the two nerve branches.Any part of the muscle was capable of acting as a pacemaker for myogenic rhythmic action potential, and the pacemaker region fluctuated with time. Excitation of the muscle could spread in two ways, directly myogenic and indirectly through nerve tracts. Myogenic conduction (2 cm/sec) was observed to be slower than neural conduction (35–38 cm/sec) in the muscle bundle.  相似文献   

17.
18.
Axis specification in the Drosophila embryo.   总被引:4,自引:0,他引:4  
Three genetic hierarchies control cell-fate specification in largely distinct regions of the antero-posterior axis of the Drosophila embryo, whereas a single hierarchy specifies dorso-ventral cell fates. Molecular genetic analysis of these hierarchies is leading to increased understanding of the nature of the regulatory circuitry that controls regional cell-fate specification.  相似文献   

19.
20.
Bioinformatics methods have identified enhancers that mediate restricted expression in the Drosophila embryo. However, only a small fraction of the predicted enhancers actually work when tested in vivo. In the present study, co-regulated neurogenic enhancers that are activated by intermediate levels of the Dorsal regulatory gradient are shown to contain several shared sequence motifs. These motifs permitted the identification of new neurogenic enhancers with high precision: five out of seven predicted enhancers direct restricted expression within ventral regions of the neurogenic ectoderm. Mutations in some of the shared motifs disrupt enhancer function, and evidence is presented that the Twist and Su(H) regulatory proteins are essential for the specification of the ventral neurogenic ectoderm prior to gastrulation. The regulatory model of neurogenic gene expression defined in this study permitted the identification of a neurogenic enhancer in the distant Anopheles genome. We discuss the prospects for deciphering regulatory codes that link primary DNA sequence information with predicted patterns of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号