首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In macrophages, enzymes that synthesize or hydrolyze phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P(3)] regulate Fcgamma receptor-mediated phagocytosis. Inhibition of phosphatidylinositol 3-kinase (PI3K) or overexpression of the lipid phosphatases phosphatase and tensin homologue (PTEN) and Src homology 2 domain-containing inositol phosphatase (SHIP-1), which hydrolyze PI(3,4,5)P(3) to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)], respectively, inhibit phagocytosis in macrophages. To examine how these enzymes regulate phagosome formation, the distributions of yellow fluorescent protein (YFP) chimeras of enzymes and pleckstrin homology (PH) domains specific for their substrates and products were analyzed quantitatively. PTEN-YFP did not localize to phagosomes, suggesting that PTEN regulates phagocytosis globally within the macrophage. SHIP1-YFP and p85-YFP were recruited to forming phagosomes. SHIP1-YFP sequestered to the leading edge and dissociated from phagocytic cups earlier than did p85-cyan fluorescent protein, indicating that SHIP-1 inhibitory activities are restricted to the early stages of phagocytosis. PH domain chimeras indicated that early during phagocytosis, PI(3,4,5)P(3) was slightly more abundant than PI(3,4)P(2) at the leading edge of the forming cup. These results support a model in which phagosomal PI3K generates PI(3,4,5)P(3) necessary for later stages of phagocytosis, PTEN determines whether those late stages can occur, and SHIP-1 regulates when and where they occur by transiently suppressing PI(3,4,5)P(3)-dependent activities necessary for completion of phagocytosis.  相似文献   

2.
Engulfment of particles by phagocytes is induced by their interaction with specific receptors on the cell surface, which leads to actin polymerization and the extension of membrane protrusions to form a closed phagosome. Membrane delivery from internal pools is considered to play an important role in pseudopod extension during phagocytosis. Here, we report that endogenous ADP ribosylation factor 6 (ARF6), a small GTP-binding protein, undergoes a sharp and transient activation in macrophages when phagocytosis was initiated via receptors for the Fc portion of immunoglobulins (FcRs). A dominant-negative mutant of ARF6 (T27N mutation) dramatically affected FcR-mediated phagocytosis. Expression of ARF6-T27N lead to a reduction in the focal delivery of vesicle-associated membrane protein 3+ endosomal recycling membranes at phagocytosis sites, whereas actin polymerization was unimpaired. This resulted in an early blockade in pseudopod extension and accumulation of intracellular vesicles, as observed by electron microscopy. We conclude that ARF6 is a major regulator of membrane recycling during phagocytosis.  相似文献   

3.
Phagocytosis relies on extension of plasmalemmal pseudopods generated by focal actin polymerisation and delivery of membranes from intracellular pools. Here we show that compartments of the late endocytic pathway, bearing the tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP/VAMP7), are recruited upon particle binding and undergo exocytosis before phagosome sealing in macrophages during Fc receptor (FcR)-mediated phagocytosis. Expression of the dominant-negative amino-terminal domain of TI-VAMP or depletion of TI-VAMP with small interfering RNAs inhibited phagocytosis mediated by Fc or complement receptors. In addition, inhibition of TI-VAMP activity led to a reduced exocytosis of late endocytic vesicles and this resulted in an early blockade of pseudopod extension, as observed by scanning electron microscopy. Therefore, TI-VAMP defines a new pathway of membrane delivery required for optimal FcR-mediated phagocytosis.  相似文献   

4.
Class I myosins, which link F-actin to membrane, are largely undefined in lymphocytes. Mass spectrometric analysis of lymphocytes identified two short tail forms: (Myo1G and Myo1C) and one long tail (Myo1F). We investigated Myo1G, the most abundant in T-lymphocytes, and compared key findings with Myo1C and Myo1F. Myo1G localizes to the plasma membrane and associates in an ATP-releasable manner to the actin-containing insoluble pellet. The IQ+tail region of Myo1G (Myo1C and Myo1F) is sufficient for membrane localization, but membrane localization is augmented by the motor domain. The minimal region lacks IQ motifs but includes: 1) a PH-like domain; 2) a “Pre-PH” region; and 3) a “Post-PH” region. The Pre-PH predicted α helices may contribute electrostatically, because two conserved basic residues on one face are required for optimal membrane localization. Our sequence analysis characterizes the divergent PH domain family, Myo1PH, present also in long tail myosins, in eukaryotic proteins unrelated to myosins, and in a probable ancestral protein in prokaryotes. The Myo1G Myo1PH domain utilizes the classic lipid binding site for membrane association, because mutating either of two basic residues in the “signature motif” destroys membrane localization. Mutation of each basic residue of the Myo1G Myo1PH domain reveals another critical basic residue in the β3 strand, which is shared only by Myo1D. Myo1G differs from Myo1C in its phosphatidylinositol 4,5-bisphosphate dependence for membrane association, because membrane localization of phosphoinositide 5-phosphatase releases Myo1C from the membrane but not Myo1G. Thus Myo1PH domains likely play universal roles in myosin I membrane association, but different isoforms have diverged in their binding specificity.  相似文献   

5.
PtdIns (3,4,5) P3 recruitment of Myo10 is essential for axon development   总被引:1,自引:0,他引:1  
Yu H  Wang N  Ju X  Yang Y  Sun D  Lai M  Cui L  Sheikh MA  Zhang J  Wang X  Zhu X 《PloS one》2012,7(5):e36988
  相似文献   

6.
Tumor suppressor PTEN mediates sensing of chemoattractant gradients   总被引:41,自引:0,他引:41  
Iijima M  Devreotes P 《Cell》2002,109(5):599-610
Shallow gradients of chemoattractants, sensed by G protein-linked signaling pathways, elicit localized binding of PH domains specific for PI(3,4,5)P3 at sites on the membrane where rearrangements of the cytoskeleton and pseudopod extension occur. Disruption of the PI 3-phosphatase, PTEN, in Dictyostelium discoideum dramatically prolonged and broadened the PH domain relocation and actin polymerization responses, causing the cells lacking PTEN to follow a circuitous route toward the attractant. Exogenously expressed PTEN-GFP localized to the surface membrane at the rear of the cell. Membrane localization required a putative PI(4,5)P2 binding motif and was required for chemotaxis. These results suggest that specific phosphoinositides direct actin polymerization to the cell's leading edge and regulation of PTEN through a feedback loop plays a critical role in gradient sensing and directional migration.  相似文献   

7.
The intracellular pathogen Shigella flexneri forms membrane protrusions to spread from cell to cell. As protrusions form, myosin‐X (Myo10) localizes to Shigella. Electron micrographs of immunogold‐labelled Shigella‐infected HeLa cells reveal that Myo10 concentrates at the bases and along the sides of bacteria within membrane protrusions. Time‐lapse video microscopy shows that a full‐length Myo10 GFP‐construct cycles along the sides of Shigella within the membrane protrusions as these structures progressively lengthen. RNAi knock‐down of Myo10 is associated with shorter protrusions with thicker stalks, and causes a >80% decrease in confluent cell plaque formation. Myo10 also concentrates in membrane protrusions formed by another intracellular bacteria, Listeria, and knock‐down of Myo10 also impairs Listeria plaque formation. In Cos7 cells (contain low concentrations of Myo10), the expression of full‐length Myo10 nearly doubles Shigella‐induced protrusion length, and lengthening requires the head domain, as well as the tail‐PH domain, but not the FERM domain. The GFP‐Myo10‐HMM domain localizes to the sides of Shigella within membrane protrusions and the GFP‐Myo10‐PH domain localizes to host cell membranes. We conclude thatMyo10 generates the force to enhance bacterial‐induced protrusions by binding its head region to actin filaments and its PH tail domain to the peripheral membrane.  相似文献   

8.
The mechanism of phagocytosis of pathogens remains to be fully characterized. We report a novel phagocytosis pathway for Pseudomonas aeruginosa, which is initiated by cholesterol-rich membrane rafts and is dependent on Lyn, primarily an immune regulator with both positive and negative roles. Blocking of Lyn or blocking of cholesterol synthesis significantly inhibited phagocytosis by alveolar macrophages. We found that Lyn, via Src homology 2 and 3 domains, bound to and then activated PI3K and Akt to regulate intracellular routing of the engulfed P. aeruginosa. Further analysis indicates that Lyn and raft components entered in phagosomes and late lysosomes. Finally, respiratory burst was dependent on Lyn and membrane rafts, as confirmed by small interfering RNA and dominant-negative strategies. Our investigations demonstrate that Lyn along with membrane rafts plays a fundamental role in phagocytosis by alveolar macrophages during infection.  相似文献   

9.
Stimulation of macrophages by various ligands results in the activation of both phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC). Here, we showed that PKCdelta selectively inhibits class IA PI3K. Prior exposure of macrophages to a PKC activator, phorbol 12-myristate 13-acetate (PMA) inhibited the PI3K activation induced by the Fcgamma receptor (FcgammaR) ligation but not that induced by C5a. Prolonged PKC inhibition by GF109203X increased the basal PI3K activity of quiescent macrophages. The effect of the PKC inhibitor can be observed in macrophages from mice lacking class IB PI3K (p110gamma). Thus PKC was suggested to selectively attenuate the class IA activity. Chronic PKC activation by PMA induced PKCdelta degradation and Akt activation. Enhancement of the basal Akt actvity was also observed in cells stably deficient in PKCdelta prepared by shRNA technique. FcgammaR-mediated phagocytosis was dramatically increased in these cells. Thus it is suggested that inactivation of class IA PI3K by PKCdelta is functioning in regulation of FcgammaR-mediated phagocytosis.  相似文献   

10.
The PH domains of OSBP and FAPP1 fused to GFP were used to monitor PI(4)P distribution in COS-7 cells during manipulations of PI 4-kinase (PI4K) activities. Both domains were associated with the Golgi and small cytoplasmic vesicles, and a small fraction of OSBP-PH was found at the plasma membrane (PM). Inhibition of type-III PI4Ks with 10 microM wortmannin (Wm) significantly reduced but did not abolish Golgi localization of either PH domains. Downregulation of PI4KIIalpha or PI4KIIIbeta by siRNA reduced the localization of the PH domains to the Golgi and in the former case any remaining Golgi localization was eliminated by Wm treatment. PLC activation by Ca2+ ionophores dissociated the domains from all membranes, but after Ca2+ chelation, they rapidly reassociated with the Golgi, the intracellular vesicles and with the PM. PM association of the domains was significantly higher after the Ca2+ transient and was abolished by Wm pretreatment. PM relocalization was not affected by down-regulation of PI4KIIIbeta or -IIalpha, but was inhibited by down-regulation of PI4KIIIalpha, or by 10 microM PAO, which also inhibits PI4KIIIalpha. Our data suggest that these PH domains detect PI(4)P formation in extra-Golgi compartments under dynamic conditions and that various PI4Ks regulate PI(4)P synthesis in distinct cellular compartments.  相似文献   

11.
Fcγ Receptor (FcR)-mediated phagocytosis by macrophages requires phosphatidylinositol 3-kinase (PI3K) and activation of the Rho-family GTPases Cdc42 and Rac1. Cdc42 is activated at the advancing edge of the phagocytic cup, where actin is concentrated, and is deactivated at the base of the cup. The timing of 3′ phosphoinositide (3′PI) concentration changes in cup membranes suggests a role for 3′PIs in deactivation of Cdc42. This study examined the relationships between PI3K and the patterns of Rho-family GTPase signaling during phagosome formation. Inhibition of PI3K resulted in persistently active Cdc42 and Rac1, but not Rac2, in stalled phagocytic cups. Patterns of 3′PIs and Rho-family GTPase activities during phagocytosis of 5- and 2-μm-diameter microspheres indicated similar underlying mechanisms despite particle size–dependent sensitivities to PI3K inhibition. Expression of constitutively active Cdc42(G12V) increased 3′PI concentrations in plasma membranes and small phagosomes, indicating a role for Cdc42 in PI3K activation. Cdc42(G12V) inhibited phagocytosis at a later stage than inhibition by dominant negative Cdc42(N17). Together, these studies identified a Cdc42 activation cycle organized by PI3K, in which FcR-activated Cdc42 stimulates PI3K and actin polymerization, and the subsequent increase of 3′PIs in cup membranes inactivates Cdc42 to allow actin recycling necessary for phagosome formation.  相似文献   

12.
Fission yeast myo1(+) encodes a myosin-I with all three tail homology domains (TH1, 2, 3) found in typical long-tailed myosin-Is. Myo1p tail also contains a COOH-terminal acidic region similar to the A-domain of WASp/Scar proteins and other fungal myosin-Is. Our analysis shows that Myo1p and Wsp1p, the fission yeast WASp-like protein, share functions and cooperate in controlling actin assembly. First, Myo1p localizes to cortical patches enriched at tips of growing cells and at sites of cell division. Myo1p patches partially colocalize with actin patches and are dependent on an intact actin cytoskeleton. Second, although deletion of myo1(+) is not lethal, Deltamyo1 cells have actin cytoskeletal defects, including loss of polarized cell growth, delocalized actin patches, and mating defects. Third, additional disruption of wsp1(+) is synthetically lethal, suggesting that these genes may share functions. In mapping the domains of Myo1p tail that share function with Wsp1p, we discovered that a Myo1p construct with just the head and TH1 domains is sufficient for cortical localization and to rescue all Deltamyo1 defects. However, it fails to rescue the Deltamyo1 Deltawsp1 lethality. Additional tail domains, TH2 and TH3, are required to complement the double mutant. Fourth, we show that a recombinant Myo1p tail binds to Arp2/3 complex and activates its actin nucleation activity.  相似文献   

13.
We show that cells lacking two Dictyostelium class I phosphatidylinositol (PI) 3' kinases (PI3K and pi3k1/2-null cells) or wild-type cells treated with the PI3K inhibitor LY294002 are unable to properly polarize, are very defective in the temporal, spatial, and quantitative regulation of chemoattractant-mediated filamentous (F)-actin polymerization, and chemotax very slowly. PI3K is thought to produce membrane lipid-binding sites for localization of PH domain-containing proteins. We demonstrate that in response to chemoattractants three PH domain-containing proteins do not localize to the leading edge in pi3k1/2-null cells, and the translocation is blocked in wild-type cells by LY294002. Cells lacking one of these proteins, phdA-null cells, exhibit defects in the level and kinetics of actin polymerization at the leading edge and have chemotaxis phenotypes that are distinct from those described previously for protein kinase B (PKB) (pkbA)-null cells. Phenotypes of PhdA-dominant interfering mutations suggest that PhdA is an adaptor protein that regulates F-actin localization in response to chemoattractants and links PI3K to the control of F-actin polymerization at the leading edge during pseudopod formation. We suggest that PKB and PhdA lie downstream from PI3K and control different downstream effector pathways that are essential for proper chemotaxis.  相似文献   

14.
《The Journal of cell biology》1996,135(5):1249-1260
Phosphoinositide 3-kinase (PI 3-kinase) has been implicated in growth factor signal transduction and vesicular membrane traffic. It is thought to mediate the earliest steps leading from ligation of cell surface receptors to increased cell surface ruffling. We show here that inhibitors of PI 3-kinase inhibit endocytosis in macrophages, not by interfering with the initiation of the process but rather by preventing its completion. Consistent with earlier studies, the inhibitors wortmannin and LY294002 inhibited fluid-phase pinocytosis and Fc receptor-mediated phagocytosis, but they had little effect on the receptor-mediated endocytosis of diI-labeled, acetylated, low density lipoprotein. Large solute probes of endocytosis reported greater inhibition by wortmannin than smaller probes did, indicating that macropinocytosis was affected more than micropinocytosis. Since macropinocytosis and phagocytosis are actin-mediated processes, we expected that their inhibition by wortmannin resulted from deficient signaling from macrophage colony-stimulating factor (M-CSF) receptors or Fc receptors to the actin cytoskeleton. However, video microscopy showed cell surface ruffling in wortmannin-treated cells, and increased ruffling after addition of M-CSF or phorbol myristate acetate. Quantitative measurements of video data reported slightly diminished ruffling in wortmannin-treated cells. Remarkably, the ruffles that formed in wortmannin-treated macrophages all receded into the cytoplasm without closing into macropinosomes. Similarly, wortmannin and LY294002 did not inhibit the extension of actin-rich pseudopodia along IgG- opsonized sheep erythrocytes, but instead prevented them from closing into phagosomes. These findings indicate that PI 3-kinase is not necessary for receptor-mediated stimulation of pseudopod extension, but rather functions in the closure of macropinosomes and phagosomes into intracellular organelles.  相似文献   

15.
Phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol(3,4,5)-trisphosphate (PIP3) control cell growth, migration, and other processes by recruiting proteins with pleckstrin homology (PH) domains and possibly other domains to the plasma membrane (PM). However, previous experimental and structural work with PH domains left conflicting evidence about which ones are PIP3 regulated. Here we used live-cell confocal imaging of 130 YFP-conjugated mouse PH domains and found that 20% translocated to the PM in response to receptor-generated PIP3 production. We developed a recursive-learning algorithm to predict PIP3 regulation of 1200 PH domains from different eukaryotes and validated that it accurately predicts PIP3 regulation. Strikingly, this algorithm showed that PIP3 regulation is specified by amino acids across the PH domain, not just the PIP3-binding pocket, and must have evolved several times independently from PIP3-insensitive ancestral PH domains. Finally, our algorithm and live-cell experiments provide a functional survey of PH domains in different species, showing that PI3K regulation increased from approximately two C. elegans and four Drosophila to 40 vertebrate proteins.  相似文献   

16.
Phosphatidylinositol 3-kinase (PI3K) mediates a variety of cellular responses by generating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. These 3-phosphoinositides then function directly as second messengers to activate downstream signaling molecules by binding pleckstrin homology (PH) domains in these signaling molecules. We have established a novel assay in the yeast Saccharomyces cerevisiae to identify proteins that bind PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in vivo which we have called TOPIS (Targets of PI3K Identification System). The assay uses a plasma membrane-targeted Ras to complement a temperature-sensitive CDC25 Ras exchange factor in yeast. Coexpression of PI3K and a fusion protein of activated Ras joined to a PH domain known to bind PtdIns(3,4)P2 (AKT) or PtdIns(3,4,5)P3 (BTK) rescues yeast growth at the non-permissive temperature of 37 degreesC. Using this assay, we have identified several amino acids in the beta1-beta2 region of PH domains that are critical for high affinity binding to PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3, and we have proposed a structural model for how these PH domains might bind PI3K products with high affinity. From these data, we derived a consensus sequence which predicts high-affinity binding to PtdIns(3, 4)P2 and/or PtdIns(3,4,5)P3, and we have identified several new PH domain-containing proteins that bind PI3K products, including Gab1, Dos, myosinX, and Sbf1. Use of this assay to screen for novel cDNAs which rescue yeast at the non-permissive temperature should provide a powerful approach for uncovering additional targets of PI3K.  相似文献   

17.
We previously isolated a monoclonal antibody named PH2 that inhibits phosphatidylserine-mediated phagocytosis of apoptotic cells by macrophages. We report here the identification of the cognate antigen. A protein bound by PH2 in Western blotting was identified as the 170-kDa subunit of eukaryotic translation initiation factor 3 (eIF3 p170/eIF3a). When eIF3a was expressed in a culture cell line as a protein fused to green fluorescence protein, the fusion protein was detected at the cell surface only after the induction of apoptosis. The same phenomenon was seen when the localization of endogenous eIF3a was determined using anti-eIF3a antibody, and eIF3a seemed to be partially degraded during apoptosis. Furthermore, bacterially expressed N-terminal half of eIF3a fused to glutathione S-transferase bound to the surface of macrophages and inhibited phagocytosis of apoptotic cells by macrophages when it was added to phagocytosis reactions. These results collectively suggest that eIF3a translocates to the cell surface upon apoptosis, probably after partial degradation, and bridges apoptotic cells and macrophages to enhance phagocytosis.  相似文献   

18.
Myo1c is a member of the myosin superfamily that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), links the actin cytoskeleton to cellular membranes and plays roles in mechano-signal transduction and membrane trafficking. We located and characterized two distinct membrane binding sites within the regulatory and tail domains of this myosin. By sequence, secondary structure, and ab initio computational analyses, we identified a phosphoinositide binding site in the tail to be a putative pleckstrin homology (PH) domain. Point mutations of residues known to be essential for polyphosphoinositide binding in previously characterized PH domains inhibit myo1c binding to PIP(2) in vitro, disrupt in vivo membrane binding, and disrupt cellular localization. The extended sequence of this binding site is conserved within other myosin-I isoforms, suggesting they contain this putative PH domain. We also characterized a previously identified membrane binding site within the IQ motifs in the regulatory domain. This region is not phosphoinositide specific, but it binds anionic phospholipids in a calcium-dependent manner. However, this site is not essential for in vivo membrane binding.  相似文献   

19.
Serine/threonine kinase Akt regulates key cellular processes such as cell growth, proliferation, and survival. Activation of Akt by mitogenic factor depends on phosphatidylinositol 3-kinase (PI3K). Here, we report that IKBKE (also known as IKKε and IKKi) activates Akt through a PI3K-independent pathway. IKBKE directly phosphorylates Akt-Thr308 and Ser473 independent of the pleckstrin homology (PH) domain. IKBKE activation of Akt was not affected by inhibition of PI3K, knockdown of PDK1 or mTORC2 complex. Further, this activation could be inhibited by Akt inhibitors MK-2206 and GSK690693 but not the compounds (perifosine and triciribine) targeting the PH domain of Akt. Expression of IKBKE largely correlates with activation of Akt in breast cancer. Moreover, inhibition of Akt suppresses IKBKE oncogenic transformation. These findings indicate that IKBKE is an Akt-Thr308 and -Ser473 kinase and directly activates Akt independent of PI3K, PDK1, and mTORC2 as well as PH domain. Our data also suggest that Akt inhibitors targeting the PH domain have no effect on the tumors in which hyperactive Akt resulted from elevated IKBKE.  相似文献   

20.
Lu Q  Yu J  Yan J  Wei Z  Zhang M 《Molecular biology of the cell》2011,22(22):4268-4278
Myosin X (MyoX) is an unconventional myosin that is known to induce the formation and elongation of filopodia in many cell types. MyoX-induced filopodial induction requires the three PH domains in its tail region, although with unknown underlying molecular mechanisms. MyoX's first PH domain is split into halves by its second PH domain. We show here that the PH1(N)-PH2-PH1(C) tandem allows MyoX to bind to phosphatidylinositol (3,4,5)-triphosphate [PI(3,4,5)P(3)] with high specificity and cooperativity. We further show that PH2 is responsible for the specificity of the PI(3,4,5)P(3) interaction, whereas PH1 functions to enhance the lipid membrane-binding avidity of the tandem. The structure of the MyoX PH1(N)-PH2-PH1(C) tandem reveals that the split PH1, PH2, and the highly conserved interdomain linker sequences together form a rigid supramodule with two lipid-binding pockets positioned side by side for binding to phosphoinositide membrane bilayers with cooperativity. Finally, we demonstrate that disruption of PH2-mediated binding to PI(3,4,5)P(3) abolishes MyoX's function in inducing filopodial formation and elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号