首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: The importance of 3D conformal percutan and brachytherapy treatment planning based on CT and MRI examinations in treatment of oral cavity tumors. Introducing of the planning procedure and the selection aspects. METHOD: We present the treatment planning based on CT and MRI slices of an oral cavity tumor. The percutan or interstitial boost follow the percutan irradiation of the involved regions and lymph nodes, regarding to the target volume and the critical organs. RESULT: Our ADAC 3D planning system gives us the possibility to add the first line and the boost treatment plans, to determine and compare the dose distribution within the planned target volume and the radiation load of the critical organs. CONCLUSION: The comparative 3D radiation planning system allows higher local dose escalation required for the effective radiation treatment of oral cavity tumors with maximal protection of the surrounding healthy tissues.  相似文献   

2.
3.
4.
5.
6.
ObjectivesTo verify the dosimetric accuracy of treatment plans in high dose rate (HDR) brachytherapy by using Gafchromic EBT2 film and to demonstrate the adequacy of dose calculations of a commercial treatment planning system (TPS) in a heterogeneous medium.MethodsAbsorbed doses at chosen points in anatomically different tissue equivalent phantoms were measured using Gafchromic EBT2 film. In one case, tandem ovoid brachytherapy was performed in a homogeneous cervix phantom, whereas in the other, organ heterogeneities were introduced in a phantom to replicate the upper thorax for esophageal brachytherapy treatment. A commercially available TPS was used to perform treatment planning in each case and the EBT2 films were irradiated with the HDR Ir-192 brachytherapy source.ResultsFilm measurements in the cervix phantom were found to agree with the TPS calculated values within 3% in the clinically relevant volume. In the thorax phantom, the presence of surrounding heterogeneities was not seen to affect the dose distribution in the volume being treated, whereas, a little dose perturbation was observed at the lung surface. Doses to the spinal cord and to the sternum bone were overestimated and underestimated by 14.6% and 16.5% respectively by the TPS relative to the film measurements. At the trachea wall facing the esophagus, a dose reduction of 10% was noticed in the measurements.ConclusionsThe dose calculation accuracy of the TPS was confirmed in homogeneous medium, whereas, it was proved inadequate to produce correct dosimetric results in conditions of tissue heterogeneity.  相似文献   

7.
8.
9.
Background and purposeComputed tomography (CT) imaging is the current gold standard for radiotherapy treatment planning (RTP). The establishment of a magnetic resonance imaging (MRI) only RTP workflow requires the generation of a synthetic CT (sCT) for dose calculation. This study evaluates the feasibility of using a multi-atlas sCT synthesis approach (sCTa) for head and neck and prostate patients.Material and methodsThe multi-atlas method was based on pairs of non-rigidly aligned MR and CT images. The sCTa was obtained by registering the MRI atlases to the patient’s MRI and by fusing the mapped atlases according to morphological similarity to the patient. For comparison, a bulk density assignment approach (sCTbda) was also evaluated. The sCTbda was obtained by assigning density values to MRI tissue classes (air, bone and soft-tissue). After evaluating the synthesis accuracy of the sCTs (mean absolute error), sCT-based delineations were geometrically compared to the CT-based delineations. Clinical plans were re-calculated on both sCTs and a dose-volume histogram and a gamma analysis was performed using the CT dose as ground truth.ResultsResults showed that both sCTs were suitable to perform clinical dose calculations with mean dose differences less than 1% for both the planning target volume and the organs at risk. However, only the sCTa provided an accurate and automatic delineation of bone.ConclusionsCombining MR delineations with our multi-atlas CT synthesis method could enable MRI-only treatment planning and thus improve the dosimetric and geometric accuracy of the treatment, and reduce the number of imaging procedures.  相似文献   

10.
PurposeTo evaluate the impact on dose distribution to eye organs-at-risk (eOARs) of a computed tomography (CT)-based treatment planning in eye plaque brachytherapy (EPB) treatment.MethodsWe analyzed 19 ocular melanoma patients treated with ruthenium-106 plaques to a total dose of 100 Gy to tumor apex using conventional central-axis-point dose calculation. Treatments were re-planned using the Plaque Simulator (PS) software implementing two different strategies: a personalized CT-eye-model (CT-PS) and a standard-eye-model (SEM-PS) defined by Collaborative Ocular Melanoma Study. Dice coefficient and Hausdorff distance evaluated the concordance between eye-bulb-models. Mean doses (Dmean) to tumor and eOARs were extracted from Dose-Volume-Histograms and Retinal-Dose-Area-Histogram. Differences between planning approaches were tested by Wilcoxon signed-rank test.ResultsIn the analyzed cohort, 8 patients (42%) had posterior tumor location, 8 (42%) anterior, and 3 (16%) equatorial. The SEM did not accurately described the real CT eye-bulb geometry (median Hausdorff distance 0.8 mm, range: (0.4–1.3) mm). Significant differences in fovea and macula Dmean values were found (p = 0.04) between CT-PS and SEM-PS schemes. No significant dosimetric differences were found for tumor and other eOARs. The planning scheme particularly affects the OARs closest to the tumor with a general tendency of SEM-PS to overestimate the doses to the OARs closest to the tumor.ConclusionThe dosimetric accuracy achievable with CT-PS EPB treatment planning may help to identify ocular melanoma patients who could benefit the most from a personalized eye dosimetry for an optimal outcome in terms of tumor coverage and eOARs sparing. Further research and larger studies are underway.  相似文献   

11.
AimThe accuracy of treatment planning systems is of vital importance in treatment outcomes in brachytherapy. In the current study the accuracy of dose calculations of a high dose rate (HDR) brachytherapy treatment planning system (TPS) was validated using the Monte Carlo method.Materials and methodsThree 60Co sources of the GZP6 afterloading brachytherapy system were modelled using MCNP4C Monte Carlo (MC) code. The dose distribution around all the sources was calculated by MC and a dedicated treatment planning system. The results of both methods were compared.ResultsThere was good agreement (<2%) between TPS and MC calculated dose distributions except at a point near the sources (<1 cm) and beyond the tip of the sources.ConclusionsOur study confirmed the accuracy of TPS calculated dose distributions for clinical use in HDR brachytherapy.  相似文献   

12.
13.
PurposeCombined PET/CT imaging has been proposed as an integral part of radiotherapy treatment planning (TP). Contrast-enhanced CT (ceCT) images are frequently acquired as part of the PET/CT examination to support target delineation. The aim of this dosimetric planning study was to investigate the error introduced by using a ceCT for intensity modulated radiotherapy (IMRT) TP with Monte Carlo dose calculation for non-small cell lung cancer (NSCLC).Material and methodsNine patients with NSCLC prior to chemo-RT were included in this retrospective study. For each patient non-enhanced, low-dose CT (neCT), ceCT and [18F]-FDG-PET emission data were acquired within a single examination. Manual contouring and TP were performed on the ceCT. An additional set of independent target volumes was auto-segmented in PET images. Dose distributions were recalculated on the neCT. Differences in dosimetric parameters were evaluated.ResultsDose differences in PTV and lungs were small for all patients. The maximum difference in all PTVs when using ceCT images for dose calculation was ?2.1%, whereas the mean difference was less than ?1.7%. Maximum differences in the lungs ranged from ?1.8% to 2.1% (mean: ?0.1%). In four patients an underestimation of the maximum spinal cord dose between 2% and 3.2% was observed, but treatment plans remained clinically acceptable.ConclusionsMonte Carlo based IMRT planning for NSCLC patients using ceCT allows for correct dose calculation. A direct comparison to neCT-based treatment plans revealed only small dose differences. Therefore, ceCT-based TP is clinically safe as long as the maximum acceptable dose to organs at risk is not approached.  相似文献   

14.
PurposeCorrect commissioning of treatment planning systems (TPSs) is important for reducing treatment failure events. There is currently no comprehensive and robust methodology available for TPS commissioning in modern brachytherapy. This review aimed to develop a comprehensive template for commissioning modern 3D-image-based brachytherapy TPSs for high dose rate (HDR) gynaecological applications.MethodsThe literature relevant to TPS commissioning, including both external beam radiation therapy (EBRT) and brachytherapy, as well as guidelines by the International Atomic Energy Agency (IAEA), the American Association of Physicists in Medicine (AAPM), and the European Society for Radiotherapy and Oncology (ESTRO) were searched, studied and appraised. The applied relevant EBRT TPS commissioning tests were applied to brachytherapy. The developed template aimed to cover all dosimetric and non-dosimetric issues.ResultsThe essential commissioning items could be categorized into six parts: geometry, dose calculation, plan evaluation tools, plan optimization, TPS output, and end-to-end verification. The final template consists of 43 items. This paper presents the purpose and role of each test, as well as tolerance limits, to facilitate the use of the template.ConclusionThe information and recommendations available in a collection of publications over many years have been reviewed in order to develop a comprehensive template for commissioning complex modern 3D-image-based brachytherapy TPSs for HDR gynaecological applications. The up-to-date and concise information contained in the template can aid brachytherapy physicists during TPS commissioning as well as devising a regular quality assurance program and allocation of time and resources.  相似文献   

15.
PurposeTo characterize the dose distribution in water of a novel beta-emitting brachytherapy source for use in a Conformal Superficial Brachytherapy (CSBT) device.Methods and materialsYttrium-90 (90Y) sources were designed for use with a uniquely designed CSBT device. Depth dose and planar dose measurements were performed for bare sources and sources housed within a 3D printed source holder. Monte Carlo simulated dose rate distributions were compared to film-based measurements. Gamma analysis was performed to compare simulated and measured dose rates from seven 90Y sources placed simultaneously using the CSBT device.ResultsThe film-based maximum measured surface dose rate for a bare source in contact with the surface was 3.35 × 10–7 cGy s−1 Bq−1. When placed in the source holder, the maximum measured dose rate was 1.41 × 10–7 cGy s−1 Bq−1. The Monte Carlo simulated depth dose rates were within 10% or 0.02 cm of the measured dose rates for each depth of measurement. The maximum film surface dose rate measured using a seven-source configuration within the CSBT device was 1.78 × 10−7 cGy s−1 Bq−1. Measured and simulated dose rate distribution of the seven-source configuration were compared by gamma analysis and yielded a passing rate of 94.08%. The gamma criteria were 3% for dose-difference and 0.07056 cm for distance-to-agreement. The estimated measured dose rate uncertainty was 5.34%.Conclusions90Y is a unique source that can be optimally designed for a customized CSBT device. The rapid dose falloff provided a high dose gradient, ideal for treatment of superficial lesions. The dose rate uncertainty of the 90Y-based CSBT device was within acceptable brachytherapy standards and warrants further investigation.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号