首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brisson D  Dykhuizen DE 《Genetics》2004,168(2):713-722
The outer surface protein C (ospC) locus of the Lyme disease bacterium, Borrelia burgdorferi, is at least an order of magnitude more variable than other genes in the species. This variation is classified into 22 ospC major groups, 15 of which are found in the northeastern United States. The frequency distributions of ospC within populations suggest that this locus is under balancing selection. In multiple-niche polymorphism, a type of balancing selection, diversity within a population can be maintained when the environment is heterogeneous and no one genotype has the highest fitness in all environments. Genetically different individuals within vertebrate species and different vertebrate species constitute diverse environments for B. burgdorferi. We examined four important host species of B. burgdorferi and found that the strains that infected each species had different sets of ospC major groups. We found no variation among conspecific hosts in the ospC major groups of their infecting strains. These results suggest multiple niches create balancing selection at the ospC locus.  相似文献   

2.
The expression of a Borrelia burgdorferi gene, erpT was investigated throughout the spirochaete life cycle in the arthropod vector and the murine host. Three phage clones from a B. burgdorferi DNA expression library synthesized a 30 kDa antigen that was recognized by antibodies in the sera of B. burgdorferi -infected mice but not mice hyperimmunized with B. burgdorferi lysates. Differential antibody binding suggested that this protein was preferentially expressed in vivo . This antigen was designated ErpT, based upon 99.6% homology with the BBF01 sequence in the B. burgdorferi genome. ErpT was not detected on spirochaetes cultured in BSK II medium by indirect immunofluorescence or in B. burgdorferi lysates by immunoblotting, implying that ErpT is not readily produced in vitro. erpT mRNA was not discernible by Northern blot but was identified by RNA polymerase chain reaction in vitro , indicating that erpT is expressed at low levels by cultured spirochaetes. erpT expression was then investigated in the vector and mice because B. burgdorferi do not normally reside in culture medium. RNA polymerase chain reaction and immunofluorescence studies demonstrated that erpT was expressed by a small minority of B. burgdorferi (11/500, 2.2%) within unfed ticks and then repressed during engorgement. erpT mRNA or ErpT antibodies were first detected in B. burgdorferi -infected mice at 4 weeks, suggesting that erpT was not expressed in the early stages of murine infection. Then, during persistent infection, RNA polymerase chain reaction showed that erpT was expressed by B. burgdorferi within the joints, heart and spleen, but not by spirochaetes in the skin. Immunization of mice with ErpT was antigenic but was not protective. These studies demonstrate that B. burgdorferi erpT is differentially expressed throughout the B. burgdorferi life cycle, in both the vector and the mammalian host, and is primarily expressed in extracutaneous sites during murine infection.  相似文献   

3.
4.

Background

The Lyme disease spirochete Borrelia burgdorferi dramatically upregulates outer surface protein C (OspC) in response to fresh bloodmeal during transmission from the tick vector to a mammal, and abundantly produces the antigen during early infection. As OspC is an effective immune target, to evade the immune system B. burgdorferi downregulates the antigen once the anti-OspC humoral response has developed, suggesting an important role for OspC during early infection.

Methodology/Principal Findings

In this study, a borrelial mutant producing an OspC antigen with a 5-amino-acid deletion was generated. The deletion didn''t significantly increase the 50% infectious dose or reduce the tissue bacterial burden during infection of the murine host, indicating that the truncated OspC can effectively protect B. burgdorferi against innate elimination. However, the deletion greatly impaired the ability of B. burgdorferi to disseminate to remote tissues after inoculation into mice.

Conclusions/Significance

The study indicates that OspC plays an important role in dissemination of B. burgdorferi during mammalian infection.  相似文献   

5.
6.
Borrelia burgdorferi, the causative agent of Lyme disease, shows a great ability to adapt to different environments, including the arthropod vector, and the mammalian host. The success of these microorganisms to survive in nature and complete their enzootic cycle depends on the regulation of genes that are essential to their survival in the different environments. This review describes the current knowledge of gene expression by B. burgdorferi in the tick and the mammalian host. The functions of the differentially regulated gene products as well as the factors that influence their expression are discussed. A thorough understanding of the changes in gene expression and the function of the differentially expressed antigens during the life cycle of the spirochete will allow a better control of this prevalent infection and the design of new, second generation vaccines to prevent infection with the spirochete.  相似文献   

7.
An in vitro assay to evaluate the bacteriolytic activity of the complement pathway was applied to 2 strains of Borrelia bissettii, CO501 and DN127, and compared with that of B. burgdorferi sensu stricto B31. Sera from mule deer (Odocoileus hemionus) and the Western Fence lizard (Sceloporus occidentalis) were completely borreliacidal for B. burgdorferi and for both strains of B. bissettii. Serum from Bobwhite quail (Colinus virginianus) was nonlytic for B. burgdorferi and partially lytic for B. bissettii strains, CO-501 and DN127. Serum from a New Zealand White rabbit (Oryctolagus cuniculus) was partially lytic for all 3 strains of Borrelia, whereas serum from white-footed mice (Peromyscus leucopus) were nonlytic for all 3 Borrelia strains. The spectrum of complement sensitivity of B. bissettii appears to be similar to that of European B. afzelii in that tested rodent serum is not lytic to these 2 genospecies. Interestingly, both B. bissettii and B. afzelii have been found to be closely associated with rodents. Complement sensitivity demonstrated in these experiments may suggest and possibly predict specific reservoir-host associations.  相似文献   

8.
Although parasite-mediated selection is assumed to be the main driver of immune gene evolution, empirical evidence that parasites induce allele frequency changes at host immune genes in time and/or space remains scarce. Here, I show that the frequency of a protective gene variant of the innate immune receptor Toll-like receptor 2 in natural bank vole (Myodes glareolus) populations is positively associated with the strength of Borrelia burgdorferi sensu lato infection risk across the European continent. Thereby, this study provides rare evidence for the role of spatially variable infection pressures in moulding the vertebrate immune system.  相似文献   

9.
Recently there have been reports on high-molecular mass components of Borrelia burgdorferi, namely the p100, p94 and p83, which claimed these proteins to be specific marker antigens for the serodiagnosis of late Lyme borreliosis. The nucleotide sequences of the p100 and p83 have been published. The alignment of the deduced N-terminal amino acid sequences with the N-terminal sequence of the p94 now provides evidence that all three proteins are identical.  相似文献   

10.
11.
The life cycle of Babesia canis in its arthropod and mammalian hosts, based on extensive personal observation, is described and reviewed. The following are dealt with: signs and symptoms of babesiosis in dogs; pathology; collection, maintenance and breeding of the tick intermediate hosts—Rhipicephalus sanguineus and Haemaphysalis leachi; transmission through tick bites; forms of B. canis in tick ova, larvae, nymphs and adults.  相似文献   

12.
Lyme borreliosis caused by the spirochete Borrelia burgdorferi is now the most common vectorborne disease in North America, Europe and Asia. It is a multisystemic infection which may cause skin, neurological, cardiac or rheumatologic disorders. The aims of the present thesis were: (i) to develop a PCR assay for direct detection of B. burgdorferi DNA and to evaluate the diagnostic utility of PCR in clinical specimens from patients with Lyme borreliosis and (ii) to study the taxonomic classification of B. burgdorferi isolates and its implications for epidemiology and clinical presentation. Laboratory diagnosis of Lyme borreliosis by direct demonstration of B. burgdorferi in clinical specimens would compared to current serology allow (i) optimal specificity, (ii) increased sensitivity during the first weeks of infection, when the antibody response is not yet detectable and (iii) discrimination between ongoing and past infection. Due to the extreme paucity of spirochetes in clinical specimens neither in vitro culture nor antigen detection had yielded a sufficient diagnostic sensitivity. Thus the recently introduced highly sensitive PCR methodology could be a solution and was thus studied. Assays for PCR amplification and subsequent identification of B. burgdorferi specific sequences were established and used. For all assays the analytical sensitivity was a few genome copies using purified DNA as template. The efficacy of PCR was initially evaluated using tissue samples from experimentally infected gerbils in order to start with biological samples a priori known to contain B. burgdorferi. B. burgdorferi DNA was detectable in 88% of the specimens. Thus the diagnostic sensitivity of PCR was comparable to and even higher than in vitro culture. PCR was significantly more sensitive than a histological B. burgdorferi specific immunophosphatase-staining method. The utility of the PCR was then tested for identification of B. burgdorferi DNA in skin biopsies from 31 patients with erythema migrans. The sensitivity of PCR was 71%, which was superior to culture and serology. Based on own and otherwise published results there is clear evidence for PCR being the most sensitive and specific test for detection of B. burgdorferi in skin biopsies from patients with both early and late dermatoborreliosis. However, since the clinical diagnosis of dermatoborreliosis in most instances is easy, an invasive procedure as a skin biopsy, will only be justified in patients with an atypical clinical presentation. The most frequent and serious manifestation of disseminated Lyme borreliosis is neuroborreliosis. PCR was applied to 190 patients with untreated and confirmed neuroborreliosis. B. burgdorferi DNA was detectable in 17-21% of CSF samples from patients with neuroborreliosis. In patients with very early neuroborreliosis (< 2 weeks), still being negative for specific intrathecal antibody synthesis, a positive PCR was more frequent than in patients with longer disease duration. PCR can be used as a diagnostic aid in these patients. However, in general the measurement of specific intrathecal antibody production in patients with neuroborreliosis was superior to PCR. In urine samples from patients with Lyme borreliosis the diagnostic sensitivity varied, generally showing a low reproducibility. Urine is thus not regarded as a suitable sample source for B. burgdorferi PCR. The reason may be the variable presence of Taq polymerase inhibitors. Based on a semi-quantitative detection system for amplicons, reflecting the input amount of specific DNA and thus the density of spirochetes in the clinical samples high amounts of DNA were found in skin biopsies whereas especially in urine the amount of DNA was low. When the present study was initiated there was no accepted classification of B. burgdorferi. A heterogeneity among B. burgdorferi strains might have important implications for understanding the epidemiology and different clinical presentations (dermatoborreliosis versus neuroborreliosis) and courses (self-limiting versus chronic disease). Furthermore, strain differences were of importance for selection of suitable antigens for diagnostic assays and for vaccine development. Since then, B. burgdorferi isolates have been studied by phenotypic and genotypic traits and have been shown to be highly heterogeneous. Our first approach was to genotype a panel of human B. burgdorferi isolates by restriction fragment length polymorphism (RFLP) of three genes. Thereafter, sequencing and dideoxy fingerprinting of ospA was applied. By RFLP the strains could be differentiated into two to five groups. The RFLP classification was compared with four different phenotypic and genotypic methods including the rRNA typing. Results obtained with the different methods correlated highly and confirmed the meanwhile accepted taxonomic classification by Baranton et al., According to this the term B. burgdorferi sensu lato comprises three different human pathogenic genospecies B. burgdorferi sensu stricto, B. garinii and B. afzelii. All three genospecies have been isolated among Danish patients with Lyme borreliosis and are thus prevalent in Denmark. Since isolation of B. burgdorferi from patients with Lyme borreliosis is laborious and often unsuccessful molecular typing methods based on PCR are recommended obviating the need for isolation by prior culture. Of special interest was to study a possible association of neuroborreliosis to certain B. burgdorferi genospecies, indicating species depended organotropism. By RFLP all six CSF isolates tested belonged to B. garinii and that 6 out of 7 isolates from patients with acrodermatitis chronica atrophicans belonged to B. afzelii. Due to the low culture yield of B. burgdorferi from CSF, the association of B. garinii and neuroborreliosis was further studied by sequence analysis and dideoxyfingerprinting analysis of ospA PCR amplicons obtained from CSF samples from patients with neuroborreliosis. Phylogenetic analysis showed that in 11 out of 13 patients B. garinii DNA was found in CSF. These data strongly supports the hypothesis that B. garinii is the principal agent of Lyme neuroborreliosis in Europe. Similarly it was shown that B. afzelii is associated with acrodermatitis chronica atrophicans and thus dermatoborreliosis. Due to a strain dependent different selection pressure in culture only PCR based methods can be used to answer whether mixed infection in patients specimens occur. Our data indicate that mixed infections in humans if ever are rare.  相似文献   

13.
Identification and classification of Vibrio species have relied upon band pattern methods (e.g., amplified fragment length polymorphism) and DNA-DNA hybridization. However, data generated by these methods cannot be used to build an online electronic taxonomy. In order to overcome these limitations, we developed the first standard multilocus sequence scheme focused on the ubiquitous and pathogenic Vibrio harveyi species group (i.e., V. harveyi, V. campbellii, V. rotiferianus, and a new as yet unnamed species). We examined a collection of 104 isolates from different geographical regions and hosts using segments of seven housekeeping genes. These two species formed separated clusters on the basis of topA, pyrH, ftsZ, and mreB gene sequences. The phylogenetic picture obtained by the other three loci, i.e., gyrB, recA, and gapA, was more complex though. V. campbellii appeared nested within V. harveyi in the recA trees, whereas V. harveyi formed a tight nested cluster within V. campbellii by gapA. The gyrB gene had no taxonomic resolution and grouped the two species together. The fuzziness observed in these three genes seems not be related to recombination but to low divergence due to the accumulation of only a few substitutions. In spite of this, the concatenated sequences provided evidence that the two species form two separated clusters. These clusters did not arise by recombination but by accumulation of point mutations. V. harveyi and V. campbellii isolates can be readily identified through the open database resource developed in this study (http://www.taxvibrio.lncc.br/). We argue that the species should be defined by evolutionary criteria. Strains of the same species will share at least 95% concatenated sequence similarity using the seven loci, and, most importantly, cospecific strains will form cohesive readily recognizable phylogenetic clades.  相似文献   

14.
We report the sequential developmental events of Borrelia burgdorferi in histological sections of Ixodes ricinus nymphs before, during and after feeding. During the blood meal a decrease of approximately 50% in the number of infected ticks was recorded (eight out of 76, 11%) in comparison with the infection rate of unfed ticks (12 out of 56, 21%). Spirochetes were detected in tick salivary glands only after 2 days of attachment. From day 3 until drop-off, the number of infected ticks increased to 31% (15 out of 49). A quadratic logistic regression analysis showed that the variation in the number of infected ticks was significant, but only during the blood meal. The drop in the percentage of infected ticks during the first hours following attachment to the host is explained by our observation of spirochetes in the faeces of the ticks. The increase in the infection rate of replete ticks may be due to an uptake of spirochetes from the host skin at the feeding site.  相似文献   

15.
The persistence of symptoms in Lyme disease patients following antibiotic therapy, and their causes, continue to be a matter of intense controversy. The studies presented here explore antibiotic efficacy using nonhuman primates. Rhesus macaques were infected with B. burgdorferi and a portion received aggressive antibiotic therapy 4-6 months later. Multiple methods were utilized for detection of residual organisms, including the feeding of lab-reared ticks on monkeys (xenodiagnosis), culture, immunofluorescence and PCR. Antibody responses to the B. burgdorferi-specific C6 diagnostic peptide were measured longitudinally and declined in all treated animals. B. burgdorferi antigen, DNA and RNA were detected in the tissues of treated animals. Finally, small numbers of intact spirochetes were recovered by xenodiagnosis from treated monkeys. These results demonstrate that B. burgdorferi can withstand antibiotic treatment, administered post-dissemination, in a primate host. Though B. burgdorferi is not known to possess resistance mechanisms and is susceptible to the standard antibiotics (doxycycline, ceftriaxone) in vitro, it appears to become tolerant post-dissemination in the primate host. This finding raises important questions about the pathogenicity of antibiotic-tolerant persisters and whether or not they can contribute to symptoms post-treatment.  相似文献   

16.
The tick-borne bacterium Borrelia burgdorferi has over 20 different circular and linear plasmids. Some B. burgdorferi plasmids are readily lost during in vitro culture or genetic manipulation. Linear plasmid 25, which is often lost in laboratory strains, is required for the infection of mice. Strains missing linear plasmid 25 (lp25(-)) are able to infect mice if the BBE22 gene on lp25 is provided on a shuttle vector. In this study, we examined the role of lp25 and BBE22 in tick infections. We tested the hypothesis that complementation with BBE22 in spirochetes lacking lp25 would restore the ability of spirochetes to infect ticks. A natural tick infection cycle was performed by feeding larvae on mice injected with the parental, lp25(-), or lp25(-) BBE22-complemented spirochete strains. In addition, larvae and nymphs were artificially infected with different strains to study tick infections independent of mouse infections. B. burgdorferi missing lp25 was significantly impaired in its ability to infect larval and nymphal ticks. When an lp25(-) strain was complemented with BBE22, the ability to infect ticks was partially restored. Complementation with BBE22 allowed spirochetes lacking lp25 to establish short-term infections in ticks, but in most cases the infection prevalence was lower than that of the wild-type strain. In addition, the number of infected ticks decreased over time, suggesting that another gene(s) on lp25 is required for long-term persistence in ticks and completion of a natural infection cycle.  相似文献   

17.
18.
B cell responses modulate disease during infection with Borrelia burgdorferi, the causative agent of Lyme disease, but are unable to clear the infection. Previous studies have demonstrated that B. burgdorferi infection induces predominantly T-independent B cell responses, potentially explaining some of these findings. However, others have shown effects of T cells on the isotype profile and the magnitude of the B. burgdorferi-specific Abs. This study aimed to further investigate the humoral response to B. burgdorferi and its degree of T cell dependence, with the ultimate goal of elucidating the mechanisms underlying the failure of effective immunity to this emerging infectious disease agent. Our study identifies distinct stages in the B cell response using a mouse model, all marked by the generation of unusually strong and persistent T-dependent and T-independent IgM Abs. The initial phase is dominated by a strong T-independent accumulation of B cells in lymph nodes and the induction of specific Abs in the absence of germinal centers. A second phase begins around week 2.5 to 3, in which relatively short-lived germinal centers develop in lymph nodes, despite a lymph node architecture that lacks clearly demarcated T and B cell zones. This response failed, however, to generate appreciable numbers of long-lived bone marrow plasma cells. Finally, there is a slow accumulation of long-lived Ab-secreting plasma cells in bone marrow, reflected by a strong but ultimately ineffective serum Ab response. Overall, the study indicates that B. burgdorferi might evade B cell immunity by interfering with its response kinetics and quality.  相似文献   

19.
Zug R  Hammerstein P 《PloS one》2012,7(6):e38544
Wolbachia are intracellular bacteria that manipulate the reproduction of their arthropod hosts in remarkable ways. They are predominantly transmitted vertically from mother to offspring but also occasionally horizontally between species. In doing so, they infect a huge range of arthropod species worldwide. Recently, a statistical analysis estimated the infection frequency of Wolbachia among arthropod hosts to be 66%. At the same time, the authors of this analysis highlighted some weaknesses of the underlying data and concluded that in order to improve the estimate, a larger number of individuals per species should be assayed and species be chosen more randomly. Here we apply the statistical approach to a more appropriate data set from a recent survey that tested both a broad range of species and a sufficient number of individuals per species. Indeed, we find a substantially different infection frequency: We now estimate the proportion of Wolbachia-infected species to be around 40% which is lower than the previous estimate but still points to a surprisingly high number of arthropods harboring the bacteria. Notwithstanding this difference, we confirm the previous result that, within a given species, typically most or only a few individuals are infected. Moreover, we extend our analysis to include several reproductive parasites other than Wolbachia that were also screened for in the aforementioned empirical survey. For these symbionts we find a large variation in estimated infection frequencies and corroborate the finding that Wolbachia are the most abundant endosymbionts among arthropod species.  相似文献   

20.
Borrelia burgdorferi spends a significant proportion of its life cycle within an ixodid tick, which has a cuticle containing chitin, a polymer of N-acetylglucosamine (GlcNAc). The B. burgdorferi celA, celB, and celC genes encode products homologous to transporters for cellobiose and chitobiose (the dimer subunit of chitin) in other bacteria, which could be useful for bacterial nutrient acquisition during growth within ticks. We found that chitobiose efficiently substituted for GlcNAc during bacterial growth in culture medium. We inactivated the celB gene, which encodes the putative membrane-spanning component of the transporter, and compared growth of the mutant in various media to that of its isogenic parent. The mutant was no longer able to utilize chitobiose, while neither the mutant nor the wild type can utilize cellobiose. We propose renaming the three genes chbA, chbB, and chbC, since they probably encode a chitobiose transporter. We also found that the chbC gene was regulated in response to growth temperature and during growth in medium lacking GlcNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号