共查询到20条相似文献,搜索用时 15 毫秒
1.
Deng C Minguela A Hussain RZ Lovett-Racke AE Radu C Ward ES Racke MK 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(9):4511-4518
Experimental autoimmune encephalomyelitis (EAE) is a CD4 Th1-mediated inflammatory demyelinating disorder of the CNS and a well-established animal model for multiple sclerosis. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a cytosolic tyrosine phosphatase that is involved in regulating the T cell activation cascade from signals initiated through the TCR. To study the role of SHP-1 in EAE pathogenesis, we immunized B10.PL mice heterozygous for deletion of the SHP-1 gene (me(v+/-)) and B10.PL wild-type mice with the immunodominant epitope of myelin basic protein (MBP Ac1-11). T cell proliferation and IFN-gamma production were significantly increased in me(v+/-) mice after immunization with MBP Ac1-11. The frequency of MBP Ac1-11-specific CD4 T cells, analyzed by staining with fluorescently labeled tetramers (MBP1-11[4Y]: I-A(u) complexes), was increased in the draining lymph node cells of me(v+/-) mice compared with wild-type mice. In addition, me(v+/-) mice developed a more severe course of EAE with epitope spreading to proteolipid protein peptide 43-64. Finally, expansion of MBP Ac1-11-specific T cells in response to Ag was enhanced in me(v+/-) T cells, particularly at lower Ag concentrations. These data demonstrate that the level of SHP-1 plays an important role in regulating the activation threshold of autoreactive T cells. 相似文献
2.
Okajo J Kaneko Y Murata Y Tomizawa T Okuzawa C Saito Y Kaneko Y Ishikawa-Sekigami T Okazawa H Ohnishi H Matozaki T Nojima Y 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(10):6164-6172
Interaction of alpha-galactosylceramide (alpha-GalCer) presented by CD1d on dendritic cells (DCs) with the invariant TCR of NKT cells activates NKT cells. We have now investigated the role of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1), a transmembrane protein abundantly expressed on DCs, in regulation of NKT cells with the use of mice that express a mutant form of SHPS-1. The suppression by alpha-GalCer of experimental lung metastasis was markedly attenuated in SHPS-1 mutant mice compared with that apparent in wild-type (WT) mice. The antimetastatic effect induced by adoptive transfer of alpha-GalCer-pulsed DCs from SHPS-1 mutant mice was also reduced compared with that apparent with WT DCs. Both the production of IFN-gamma and IL-4 as well as cell proliferation in response to alpha-GalCer in vitro were greatly attenuated in splenocytes or hepatic mononuclear cells from SHPS-1 mutant mice compared with the responses of WT cells. Moreover, CD4+ mononuclear cells incubated with alpha-GalCer and CD11c+ DCs from SHPS-1 mutant mice produced markedly smaller amounts of IFN-gamma and IL-4 than did those incubated with alpha-GalCer and CD11c+ DCs from WT mice. SHPS-1 on DCs thus appears to be essential for alpha-GalCer-induced antimetastatic activity and Th1 and Th2 responses of NKT cells. Moreover, our recent findings suggest that SHPS-1 on DCs is also essential for the priming of CD4+ T cells by DCs. 相似文献
3.
Tomizawa T Kaneko Y Kaneko Y Saito Y Ohnishi H Okajo J Okuzawa C Ishikawa-Sekigami T Murata Y Okazawa H Okamoto K Nojima Y Matozaki T 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(2):869-877
Src homology 2 domain-containing protein tyrosine phosphatase (SHP) substrate-1 (SHPS-1) is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is expressed on the surface of CD11c(+) dendritic cells (DCs) and macrophages. In this study, we show that mice that express a mutant form of SHPS-1 lacking most of the cytoplasmic region are resistant to experimental autoimmune encephalomyelitis (EAE) in response to immunization with a peptide derived from myelin oligodendrocyte glycoprotein (MOG (35-55)). The MOG (35-55)-induced proliferation of, and production of IFN-gamma, IL-2, and IL-17, by T cells from immunized SHPS-1 mutant mice were reduced compared with those apparent for wild-type cells. The abilities of splenic DCs from mutant mice to stimulate an allogenic MLR and to prime Ag-specific T cells were reduced. Both IL-12-stimulated and TLR-dependent cytokine production by DCs of mutant mice were also impaired. Finally, SHPS-1 mutant mice were resistant to induction of EAE by adoptive transfer of MOG (35-55)-specific T cells. These results show that SHPS-1 on DCs is essential for priming of naive T cells and the development of EAE. SHPS-1 is thus a potential therapeutic target in inflammatory disorders of the CNS and other autoimmune diseases. 相似文献
4.
5.
Kilgore NE Carter JD Lorenz U Evavold BD 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(10):4891-4895
The mechanism by which antagonist peptides inhibit T cell responses is unknown. Mice deficient in Src homology 2 domain-containing protein tyrosine phosphatase (SHP-1) have revealed its importance in the negative regulation of lymphocyte signaling. We investigated a possible role for SHP-1 in T cell antagonism and demonstrate, for the first time, a substantial increase in SHP-1 activity during antagonism of CD4(+) T cells. Furthermore, the removal of functional SHP-1 prevents antagonism in these cells. Our data demonstrate that T cell antagonism occurs via a negative intracellular signal that is mediated by SHP-1. 相似文献
6.
Ramachandran IR Song W Lapteva N Seethammagari M Slawin KM Spencer DM Levitt JM 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(7):3934-3945
Dendritic cells (DCs) initiate proinflammatory or regulatory T cell responses, depending on their activation state. Despite extensive knowledge of DC-activating signals, the understanding of DC inhibitory signals is relatively limited. We show that Src homology region 2 domain-containing phosphatase-1 (SHP-1) is an important inhibitor of DC signaling, targeting multiple activation pathways. Downstream of TLR4, SHP-1 showed increased interaction with several proteins including IL-1R-associated kinase-4, and modulated LPS signaling by inhibiting NF-κB, AP-1, ERK, and JNK activity, while enhancing p38 activity. In addition, SHP-1 inhibited prosurvival signaling through AKT activation. Furthermore, SHP-1 inhibited CCR7 protein expression. Inhibiting SHP-1 in DCs enhanced proinflammatory cytokines, IL-6, IL-12, and IL-1β production, promoted survival, and increased DC migration to draining lymph nodes. Administration of SHP-1-inhibited DCs in vivo induced expansion of Ag-specific cytotoxic T cells and inhibited Foxp3(+) regulatory T cell induction, resulting in an enhanced immune response against pre-established mouse melanoma and prostate tumors. Taken together, these data demonstrate that SHP-1 is an intrinsic global regulator of DC function, controlling many facets of T cell-mediated immune responses. 相似文献
7.
8.
Tethering of apoptotic cells to phagocytes through binding of CD47 to Src homology 2 domain-bearing protein tyrosine phosphatase substrate-1 总被引:3,自引:0,他引:3
Tada K Tanaka M Hanayama R Miwa K Shinohara A Iwamatsu A Nagata S 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(11):5718-5726
Apoptotic cells are swiftly phagocytosed by macrophages and immature dendritic cells. In this study, we found that one mouse macrophage cell line (BAM3) engulfed apoptotic thymocytes, but not a lymphoma cell line (WR19L). mAbs that inhibited the phagocytosis of apoptotic thymocytes by BAM3 were identified. Purification of the Ag revealed that it was Src homology 2 domain-bearing protein tyrosine phosphatase substrate-1 (SHPS-1). CD47, the ligand for SHPS-1, was expressed in mouse thymocytes, but not in WR19L. When WR19L was transformed with CD47, the transformants, after induction of apoptosis, could be phagocytosed by BAM3. The WR19L transformants expressing CD47 were more efficiently engulfed in vivo by splenic dendritic cells than the parental WR19L. Masking of the phosphatidylserine exposed on apoptotic thymocytes inhibited the engulfment, whereas the anti-SHPS-1 mAb inhibited not only the engulfment, but also the binding of apoptotic cells to phagocytes. These results indicate that macrophages require CD47 and phosphatidylserine on apoptotic cells for engulfment, and suggest that the interaction between CD47 and SHPS-1 works as a tethering step in the phagocytosis. 相似文献
9.
Fukunaga A Nagai H Noguchi T Okazawa H Matozaki T Yu X Lagenaur CF Honma N Ichihashi M Kasuga M Nishigori C Horikawa T 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(7):4091-4099
Src homology 2 domain-containing protein tyrosine phosphatase substrate 1 (SHPS-1) is a member of the signal regulatory protein family in which the extracellular region interacts with its ligand, CD47. Recent studies have demonstrated that SHPS-1 plays an important role in cell migration and cell adhesion. We demonstrate in this study, using immunohistochemical and flow cytometric analyses, that murine Langerhans cells (LCs) express SHPS-1. Treatment of mice ears with 2,4-dinitro-1-fluorobenzene significantly reduced the number of epidermal LCs, and that reduction could be reversed by pretreatment with mAb to SHPS-1 or the CD47-Fc fusion protein. Treatment with the SHPS-1 mAb in vivo reduced the number of FITC-bearing cells in the lesional lymph nodes after the application of FITC to the skin. The SHPS-1 mAb inhibited the in vivo TNF-alpha-induced migration of LCs. The emigration of dendritic cells expressing I-A(b+) from skin explants to the medium was also reduced by the SHPS-1 mAb. We further demonstrate that the chemotaxis of a murine dendritic cell line, XS52, by macrophage inflammatory protein-3beta was significantly inhibited by treatment with the SHPS-1 mAb or CD47-Fc recombinant protein. Finally, we show that migration of LCs was attenuated in mutant mice that lack the intracellular domain of SHPS-1. These observations show that the ligation of SHPS-1 with the SHPS-1 mAb or with CD47-Fc abrogates the migration of LCs in vivo and in vitro, which suggests that the SHPS-1-CD47 interaction may negatively regulate LC migration. 相似文献
10.
11.
12.
Bettaieb A Liu S Xi Y Nagata N Matsuo K Matsuo I Chahed S Bakke J Keilhack H Tiganis T Haj FG 《The Journal of biological chemistry》2011,286(11):9225-9235
Protein-tyrosine phosphatase 1B (PTP1B) and T cell protein-tyrosine phosphatase (TCPTP) are closely related intracellular phosphatases implicated in the control of glucose homeostasis. PTP1B and TCPTP can function coordinately to regulate protein tyrosine kinase signaling, and PTP1B has been implicated previously in the regulation of endoplasmic reticulum (ER) stress. In this study, we assessed the roles of PTP1B and TCPTP in regulating ER stress in the endocrine pancreas. PTP1B and TCPTP expression was determined in pancreases from chow and high fat fed mice and the impact of PTP1B and TCPTP over- or underexpression on palmitate- or tunicamycin-induced ER stress signaling assessed in MIN6 insulinoma β cells. PTP1B expression was increased, and TCPTP expression decreased in pancreases of mice fed a high fat diet, as well as in MIN6 cells treated with palmitate. PTP1B overexpression or TCPTP knockdown in MIN6 cells mitigated palmitate- or tunicamycin-induced PERK/eIF2α ER stress signaling, whereas PTP1B deficiency enhanced ER stress. Moreover, PTP1B deficiency increased ER stress-induced cell death, whereas TCPTP deficiency protected MIN6 cells from ER stress-induced death. ER stress coincided with the inhibition of Src family kinases (SFKs), which was exacerbated by PTP1B overexpression and largely prevented by TCPTP knockdown. Pharmacological inhibition of SFKs ameliorated the protective effect of TCPTP deficiency on ER stress-induced cell death. These results demonstrate that PTP1B and TCPTP play nonredundant roles in modulating ER stress in pancreatic β cells and suggest that changes in PTP1B and TCPTP expression may serve as an adaptive response for the mitigation of chronic ER stress. 相似文献
13.
14.
Satoshi Ugi Hiroshi Maegawa Jerrold M. Olefsky Yukio Shigeta Atsunori Kashiwagi 《FEBS letters》1994,340(3):216-220
To clarify the role of protein tyrosine phosphatase containing Src homology 2 (SH2) regions on insulin signaling, we investigated the interactions among the insulin receptor, a pair of SH2 domains of SH-PTP2 coupled to glutathione-S-transferase (GST) and insulin receptor substrate-1 (IRS-1)-GST fusion proteins (amino-portion, IRS-1N; carboxyl portion, IRS-1C). GST-SH2 protein of SH-PTP2 bound to the wild type insulin receptor, but not to that with a carboxyl-terminal mutation (Y/F2). Furthermore, even though Y/F2 receptors were used, the SH2 protein was also co-immunoprecipitated with IRS-1C, but not with IRS-1N. These results indicate that SH2 domains of SH-PTP2 can directly associate with the Y1322TXM motif on the carboxyl terminus of insulin receptors and also may bind to the carboxyl portion of IRS-1, possibly via the V1172IDL motif in vitro. 相似文献
15.
16.
Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1. 总被引:11,自引:5,他引:11 下载免费PDF全文
SHPTP1 (PTP1C, HCP, SHP) is an SH2 domain-containing tyrosine phosphatase expressed predominantly in hematopoietic cells. A frameshift mutation in the SHPTP1 gene causes the motheaten (me/me) mouse. These mice are essentially SHPTP1 null and display multiple hematopoietic abnormalities, most prominently hyperproliferation and inappropriate activation of granulocytes and macrophages. The me/me phenotype suggests that SHPTP1 negatively regulates macrophage proliferative pathways. Using primary bone marrow-derived macrophages from me/me mice and normal littermates, we examined the role of SHPTP1 in regulating signaling by the major macrophage mitogen colony-stimulating factor 1 (CSF-1) (also known as macrophage colony-stimulating factor). Macrophages from me/me mice hyperproliferate in response to CSF-1. In the absence of SHPTP1, the CSF-1 receptor (CSF-1R) is hyperphosphorylated upon CSF-1 stimulation, suggesting that SHPTP1 dephosphorylates the CSF-1R. At least some CSF-1R-associated proteins also are hyperactivated. SHPTP1 is associated constitutively, via its SH2 domains, with an unidentified 130-kDa phosphotyrosyl protein (P130). P130 and SHPTP1 are further tyrosyl phosphorylated upon CSF-1 stimulation. Tyrosyl-phosphorylated SHPTP1 binds to Grb2 via the Grb2 SH2 domain. Moreover, in me/me macrophages, Grb2 is associated, via its SH3 domains, with several tyrosyl phosphoproteins. These proteins are hyperphosphorylated on tyrosyl residues in me/me macrophages, suggesting that Grb2 may recruit substrates for SHPTP1. Our results indicate that SHPTP1 is a critical negative regulator of CSF-1 signaling in vivo and suggest a potential new function for Grb2. 相似文献
17.
Curcumin has been strongly implicated as an anti-inflammatory agent, but the precise mechanisms of its action are largely unknown. In this study, we show that the inhibitory action of curcumin on Janus kinase (JAK)-STAT signaling can contribute to its anti-inflammatory activity in the brain. In both rat primary microglia and murine BV2 microglial cells, curcumin effectively suppressed the ganglioside-, LPS-, or IFN-gamma-stimulated induction of cyclooxygenase-2 and inducible NO synthase, important enzymes that mediate inflammatory processes. These anti-inflammatory effects appear to be due, at least in part, to the suppression of the JAK-STAT inflammatory signaling cascade. Curcumin markedly inhibited the phosphorylation of STAT1 and 3 as well as JAK1 and 2 in microglia activated with gangliosides, LPS, or IFN-gamma. Curcumin consistently suppressed not only NF binding to IFN-gamma-activated sequence/IFN-stimulated regulatory element, but also the expression of inflammation-associated genes, including ICAM-1 and monocyte chemoattractant protein 1, whose promoters contain STAT-binding elements. We further show that activation of Src homology 2 domain-containing protein tyrosine phosphatases (SHP)-2, a negative regulator of JAK activity, is likely to be one of the mechanisms underlying the curcumin-mediated inhibition of JAK-STAT signaling. Treatment of microglial cells with curcumin led to an increase in phosphorylation and association with JAK1/2 of SHP-2, which inhibit the initiation of JAK-STAT inflammatory signaling in activated microglia. Taken together, these data suggest curcumin suppresses JAK-STAT signaling via activation of SHP-2, thus attenuating inflammatory response of brain microglial cells. 相似文献
18.
Yoshida H Tomiyama Y Oritani K Murayama Y Ishikawa J Kato H Miyagawa Ji J Honma N Nishiura T Matsuzawa Y 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(7):3213-3220
CD47 modulates a variety of cell functions such as adhesion, spreading, and migration. Using a fusion protein consisting of the extracellular region of Src homology 2 domain bearing protein tyrosine phosphatase substrate-1 (SHPS-1) and the Fc portion of human Ig (SHPS-1-Ig) we investigated the effects of SHPS-1 as a ligand for CD47 on B lymphocytes. Although SHPS-1-Ig binding to human B cell lines was solely mediated via CD47, their binding capacity for soluble and immobilized SHPS-1-Ig varied among cell lines irrespective of the similar expression levels of CD47, suggesting that distinctive affinity/avidity states exist during B cell maturation. Nalm6 cell line and tonsilar B lymphocytes adhered to immobilized SHPS-1-Ig and showed polarization-like morphology. These effects of SHPS-1-Ig were blocked by anti-CD47 mAbs (B6H12 and SE5A5). Wortmannin, a phosphatidylinositol-3 kinase inhibitor, but not pertussis toxin significantly inhibited the polarization induced by the immobilized SHPS-1-Ig. Thus, SHPS-1 acts as an adhesive substrate via CD47 in human B lymphocyte. Immunohistochemical analyses indicated that SHPS-1 is expressed on high endothelial venule as well as macrophages in human tonsils. HUVECs also express SHPS-1 in the absence of any stimuli, and the adhesion of tonsilar B lymphocytes to nonactivated HUVECs was significantly inhibited by SE5A5, indicating that SHPS-1/CD47 interaction is involved in the adhesion. Our findings suggest that SHPS-1/CD47 interaction may contribute to the recruitment of B lymphocytes via endothelial cells under steady state conditions. 相似文献
19.
20.
Wen-Shan Liu Rui-Rui Wang Wei-Ya Li Mei Rong Chi-Lu Liu 《Journal of biomolecular structure & dynamics》2020,38(9):2509-2520
AbstractNoonan syndrome with multiple lentigines (NSML), formerly known as LEOPARD syndrome (LS), is an autosomal dominant inherited multisystemic disorder. Most patients involve mutation in SHP2 encoded by tyrosine-protein phosphatase non-receptor type 11 (PTPN11) gene. Studies have shown that NSML-associated Y279C mutation exhibited the reduced phosphatase activity, leading to loss-of-function (LOF) of SHP2. However, the effect of the Y279C mutation on the SHP2 at the molecular level is unclear. In this study, molecular dynamics simulations of SHP2 wild-type (SHP2WT) and Y279C mutant (SHP2Y279C) were performed to investigate the structural differences in proteins after Y279C mutation and to find out the reason for loss-of-function of SHP2. Through a series of post-dynamic analyses, it was found that the protein occupied a smaller phase space after Y279C mutation, showing reduced flexibility. Specifically, due to the mutation of Y279C, the secondary structures of these two regions (residues Lys70-Ala72 and Gly462-Arg465) were significantly transformed from Turn to α-helix and β-strand. Furthermore, by calculating the residue interaction network, hydrogen bond occupancy and binding free energy, it was further revealed that the conformational differences between SHP2WT and SHP2Y279C systems were mainly caused by the differences in the interaction between Arg465–Phe469, Ile463–Gly467, Cys279–Lys70, Cys459–Ala72, Gly464–Phe71, Phe71–Ile463, Ile463–Ala505 and Arg465–Glu361. Consequently, this finding is expected to provide a new insight into the reason for loss-of-function of SHP2 caused by Y279C mutation.Communicated by Ramaswamy H. Sarma 相似文献