首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human blood was sheared between rotating polyethylene disks and plasma hemoglobin measured at intervals to produce kinetic hemolysis curves (KHC), plotted as free hemoglobin concentration vs time. The KHC produced by blood samples incubated in the presence of penicillin, streptomycin, gentamicin, and amikacin lie always below those for control samples, indicating a reduction in hemolysis; this reduction was greater as the drug concentration was increased. Explanations in terms of alterations in red cell structure were sought by several characterization tests of amikacin-loaded blood samples. Drug-localization studies demonstrated that significant fractions of the total dosage were associated with the red-cell membrane. Resistive pulse spectroscopy was used to show how amikacin affected cell size, deformability, and osmotic fragility; results were sensitive to storage age of the blood. In all cases, the effect of shearing was to reduce cell size, deformability, and osmotic fragility. Mechanisms for hemolytic protection by drugs are proposed.  相似文献   

2.
A new assay has been developed to study the osmotic fragility of red blood cells (RBCs) and the involvement of oxygen-derived free radicals and other oxidant species in causing human red blood cell hemolysis. The amount of hemoglobin released into the supernatant, which is a measure of human red blood cell hemolysis, is monitored using an ELISA reader. This ELISA-based osmotic fragility test compared well with the established osmotic fragility test, with the added advantage of significantly reduced time and the requirement of only 60 mul of blood. This small amount of blood was collected fresh by finger puncture and was immediately diluted 50 times with PBS, thus eliminating the use of anticoagulants and the subsequent washings. Since exposure of RBCs to 400 Gy gamma radiation caused less than 5% hemolysis 24 h after irradiation, the RBC hemolysis induced by gamma radiation was amplified by irradiating the cell in hypotonic saline. The method was validated by examining the protective effect of Trolox, an analog of vitamin E and reduced glutathione (GSH), a well-known radioprotector, against human RBC hemolysis caused by the combined action of radiation and osmotic stress. Trolox, a known membrane stabilizer and an antioxidant, and GSH offered significant protection. This new method, which is simple and requires significantly less time and fewer RBCs, may offer the ability to study the effects of antioxidants and membrane stabilizers on human red blood cell hemolysis induced by radiation and oxidative stress and assess the osmotic fragility of erythrocytes.  相似文献   

3.
H C Mel  T A Reed 《Cell biophysics》1981,3(3):233-250
Changes in red blood cell size, deformability, and osmotic fragility are indicators of altered condition and/or altered regulatory processes at the whole cell and membrane levels. An agent, such as HgCl2, that brings about specific changes of this kind can therefore serve as a selective probe of such cell condition and regulatory state. Conversely, for a health-threatening agent "active" in this way, the cell-membrane responses serve to clarify the more fundamental bases of its toxicity, as well as to permit identification and characterization of its early and low-level actions on living systems. Taking advantage of recent advances in the technique of "resistive pulse spectroscopy," we present a coordinated study of these three interrelated biophysical properties for the interactions of HgCl2 with human red cells. We thereby are able to extend previous studies of this kind into domains of shorter time (instantaneous exposures), lower level exposures (down to 10(-9) M, well below the level of acute human toxicity), as well as to additional kinds of responses (e.g., "dynamic osmotic hemolysis"). For conditions ranging from 10(-4) to 10(-9) M in HgCl2, for instantaneous to 90-min-incubated exposures, for medium osmolarities from 120 to 300, the matrix of observed cell responses includes relative swelling as well as shrinkage, changes in deformability, and both enhancement of and protection against osmotic hemolysis. Some unexpected short-term effects of time and temperature of storage of blood cell stock samples, with respect to increasing and decreasing osmotic fragility, are also reported. These apparently disparate results are interpreted in terms of mercury interactions with cell and membrane SH groups, and a reasonable rationale is presented for most of the responses in terms of disruption of passive and active Na+-K+, gradient controls, plus interactions with cellular proteins.  相似文献   

4.
Summary Rat red blood corpuscles were held stationary with respect to a continuously flowing solution in either a specially constructed centrifuge or in glass filters. The concentration of the solution was gradually decreased to cause the swelling and subsequent gradual osmotic hemolysis of the cells. The passage of the intracellular molecules —potassium, adenylate kinase, and hemoglobin—across the cell membranes and into the flowing solution was determined as a function of time. Ions and molecules begin passage across the membranes in the order of increasing molecular size. The initial flow of potassium is followed by the initial flows of hemoglobin and adenylate kinase. The flow of hemoglobin has been interpreted as the flows of hemoglobin monomers, dimers, and tetramers such that the time sequence is: potassium; hemoglobin monomer; adenylate kinase/hemoglobin dimer; and finally, hemoglobin tetramer. It is concluded that the stressed cell membrane has molecular sieving properties and that the exclusion limit (effective hole size) increases as a function of time during the initial stages of gradual osmotic hemolysis. The process of gradual osmotic hemolysis is discussed in terms of molecular sieving through stress-induced effective membrane holes. It is suggested that a portion of the membrane protein might form an elastic network which would account for the gradual increase in size and apparent homogeneity of the effective holes.This work was prepared under the auspices of the U.S. Atomic Energy Commission.  相似文献   

5.
Although the development of hemolytic anemia as a complication of acute copper intoxication is well documented, the precise mechanism by which copper produces accelerated erythrocyte destruction is unknown. Normal erythrocyte survival depends in part on the ability of the cell to deform and pass through narrow areas of microcirculation in the liver and especially in the spleen. In the present study, it is demonstrated that toxic concentrations of copper rapidly and markedly reduce erythrocyte deformability. This reduction in cell deformability is associated with a marked increase in membrane permeability and osmotic fragility of copper-treated cells. Further, the decrease in deformability occurs despite normal levels of cell ATP and the apparent absence of oxidative damage to the cell. These observations indicate that copper-mediated changes in the erythrocyte membrane may be responsible for reducing the flexibility of the cell. The loss of deformability could act to reduce erythrocyte survival and thus explain the hemolysis associated with copper intoxication in vivo.  相似文献   

6.
Exposures to microgravity and head-down tilt (HDT) produce similar changes in body fluid. This causes an increase in hematocrit that significantly affects hemorheological values. Lack of physical stimulation under bed rest conditions and the relative immobility of the crew during spaceflight also affects the blood fluidity. A group of six healthy male subjects participated as volunteers, and blood samples were collected 10 days before, on day 2 and day 9, and 2 days after the HDT phase. Blood rheology was quantified by plasma viscometry, red cell aggregability, and red cell deformability. A reduced red cell deformability, an indication of the diminished quality of the red blood cells, was measured under HDT conditions that finally led to the so-called "space flight anemia." Enhanced red cell membrane fragility induced by diminished physical activity and an increase in hemoglobin concentration are responsible for this effect. Plasma viscosity is reduced as a result of diminished plasma proteins. However, despite the reduction in plasma proteins, including fibrinogen, alpha 2-macroglobulin, and immunoglobulin M, red cell aggregation was enhanced, principally because of the increase in hematocrit. Our results of hemorheological alterations under HDT conditions may help to elucidate the formerly documented hematologic changes during spaceflight.  相似文献   

7.
Quan GB  Han Y  Liu MX  Fang L  Du W  Ren SP  Wang JX  Wang Y 《Cryobiology》2011,(2):135-144
Although incubation with glucose before freezing can increase the recovery of human red blood cells frozen with polymer, this method can also result in membrane lesions. This study will evaluate whether addition of oligosaccharide (trehalose, sucrose, maltose, or raffinose) can improve the quality of red blood cell membrane after freezing in the presence of glucose and dextran. Following incubation with glucose or the combinations of glucose and oligosaccharides for 3 h in a 37 °C water bath, red blood cells were frozen in liquid nitrogen for 24 h using 40% dextran (W/V) as the extracellular protective solution. The postthaw quality was assessed by percent hemolysis, osmotic fragility, mean corpuscle volume (MCV), distribution of phosphatidylserine, the postthaw 4 °C stability, and the integrity of membrane. The results indicated the loading efficiency of glucose or oligosaccharide was dependent on their concentrations. Moreover, addition of trehalose or sucrose could efficiently decrease osmotic fragility of red blood cells caused by incubation with glucose before freezing. The percentage of damaged cell following incubation with glucose was 38.04 ± 21.68% and significantly more than that of the unfrozen cells (0.95 ± 0.28%, P < 0.01). However, with the increase of the concentrations of trehalose, the percentages of damaged cells were decreased steadily. When the concentration of trehalose was 400 mM, the percentage of damaged cells was 1.97 ± 0.73% and similar to that of the unfrozen cells (P > 0.05). Moreover, similar to trehalose, raffinose can also efficiently prevent the osmotic injury caused by incubation with glucose. The microscopy results also indicated addition of trehalose could efficiently decrease the formation of ghosts caused by incubation with glucose. In addition, the gradient hemolysis study showed addition of oligosaccharide could significantly decrease the osmotic fragility of red blood cells caused by incubation with glucose. After freezing and thawing, when both glucose and trehalose, sucrose, or maltose were on the both sides of membrane, with increase of the concentrations of sugar, the percent hemolysis of frozen red blood cells was firstly decreased and then increased. When the total concentration of sugars was 400 mM, the percent hemolysis was significantly less than that of cells frozen in the presence of dextran and in the absence of glucose and various oligosaccharides (P < 0.01). However, when both glucose and trehalose were only on the outer side of membrane, with increase of the concentrations of sugars, the percent hemolysis was increased steadily. Furthermore, addition of oligosaccharides can efficiently decrease the osmotic fragility and exposure of phosphatidylserine of red blood cells frozen with glucose and dextran. In addition, trehalose or raffinose can also efficiently mitigate the malignant effect of glucose on the postthaw 4 °C stability of red blood cells frozen in the presence of dextran. Finally, addition of trehalose can efficiently protect the integrity of red blood cell membrane following freezing with dextran and glucose. In conclusion, addition of oligosaccharide can efficiently reduce lesions of freezing on red blood cell membrane in the presence of glucose and dextran.  相似文献   

8.
A computerized and precise method for the determination of the osmotic fragility curve of erythrocytes was developed. The pH and the temperature, the most important factors for the osmotic hemolysis, were controlled with an accuracy of 7.40 ± 0.01 and 25.0 ± 0.2°C, respectively. The method required an extremely minute amount of blood (about 5 μl). The fragility curve represented by the cumulative and first derivative curves as a function of salt concentration had excellent reproducibility for the mean corpuscular fragility and the slope of the fragility curve. The method was applied to erythrocytes treated with glutaraldehyde and to those with the various contents of cholesterol in the membrane.  相似文献   

9.
Deoxyadenosine triphosphate (dATP) is present in adenosine deaminase (ADA)-deficient or ADA-inhibited human red cells and in the red cells of the opossum Didelphis virginiana. In order to investigate the functions of dATP in the red cell, red cells were treated with 2'-deoxycoformycin (dCf), a powerful inhibitor of ADA, and incubated with phosphate, deoxyadenosine and glucose. These red cells in which ATP was almost completely replaced by dATP, had the same shape, lactate production, nucleotide consumption, stability of reduced glutathione, osmotic fragility and cell deformability as red cells containing ATP. Cells merely depleted of ATP showed reduced viability. This indicates that dATP compensates well for the absence of ATP and acts as an energy-transferring molecule to maintain cell viability. These results indicate that the accumulation of dATP or the reduction of ATP is not the cause of the hemolysis observed after dCf administration.  相似文献   

10.
A method for measuring the mechanical fragility of red blood cells suitable for use in small laboratory animals, such as rats, is reported because of lack of such data in the literature. Whole blood is mixed with phosphate buffered saline in a tube containing glass beads. The tubes are rocked for 90 minutes, centrifuged and the percent hemolysis determined. Varying the osmolality of the saline suspending medium had little effect on the mechanical fragility of rat red cells prior to the NaCl concentrations at which a significant change in osmotic hemolysis occurred. The duration of rocking increased the mechanical fragility. Varying the pH (6.4-8.0) had no effect. The size of the glass beads changed the mechanical fragility as did varying temperature. The mean mechanical fragility of rat red blood cells was 46% hemolysis (80 adult male animals). Because of the small volume of blood required with this method, mechanical fragility of red cells of other small laboratory animals also may be determined.  相似文献   

11.
Theoretical osmotic fragility curves were calculated and drawn by computer using the van't Hoff equation and the isotonic areas and volumes of 1000 individual erythrocytes. We studied the influence on the calculated curves of theoretically altering the fraction of the volume which was osmotically active from 50 to 70%, and of altering the permissible stretch before hemolysis from zero to 10%. With the two assumptions–that the membrane does not stretch before hemolysis, and that the osmotically active fraction of the cell volume is 0.58–it was possible to duplicate the general shape of the standard fragility curve; the exact NaCl concentration, however, at which there was 50% hemolysis was approximately 0.1 gm/100 ml higher than found in vitro. The calculated osmotic fragility curves can be made quantitatively similar to in vitro ones if the following statements are true: the osmotically active volume is 58%, the permissible stretch of the membrane without lysis is 6%, the cell membrane resists a slight osmotic pressure gradient of approximately 0.1 atmospheres, and hemolysis is an all or nothing phenomenon. This set of values for the relevant factors is sufficient but not unique in causing the superposition of the calculated and experimental curves. The frequency distribution of the cells according to the hemolytic salt concentrations (the sodium chloride concentration at which an individual cell just hemolyzes) was skewed positively and was leptokurtic for each of the seven normal subjects studied.  相似文献   

12.
Incubation of blood with vanadate markedly increases the affinity of hemoglobin for oxygen, decreases the deformability of erythrocytes, reduces their osmotic fragility and alters their morphology, determining the appearance of equinocytic forms. Since vanadate is easily taken up by the erythrocytes and binds hemoglobin, these effects might result from interactions of vanadate with hemoglobin and with membrane proteins at the glycerate-2, 3-P2 and/or ATP binding site. In addition, vanadate inhibits phosphoglycerate mutase, phosphoglucomutase and adenylate-kinase activities from hemolysates, suggesting a possible inhibitory effect on erythrocyte metabolism  相似文献   

13.
Red cell osmotic hemolysis has traditionally been defined by the loss of hemoglobin, in response to reduced osmotic pressure, as measured spectroscopically. Previous work from this laboratory using resistive pulse spectroscopy (RPS) has shown that in a mixed population of hemolyzing cell, ghosts can be detected as being more deformable, and hence appearing distinctly smaller, than the remaining intact cells. Other researchers using similar methods have reported detection of ghosts as apparently smaller objects, resulting from their greater sensitivity to dielectric breakdown. We now confirm both of these results, and demonstrate by kinetic studies that changes which occur in the rheological and electrical properties of ghosts are independent phenomena. We include in our analysis the explicit calculation of ghost and intact spherocyte resistivity after dielectric breakdown. The two different characterizations for ghosts are integrated into a proposed model of osmotic hemolysis based on known red blood cell membrane and cytoplasmic properties. This work provides both a theoretical and a practical foundation for RPS-based measures of osmotic fragility, including a potential new clinical test, measures which provide very early detection of the ultimate fate of osmotically stressed red cells.  相似文献   

14.
Hypoxia has been reported to cause the significant enhancement of hemoglobin (Hb) and hematocrit (Hct), which stabilizes at relatively high levels after an individual ascends to a high altitude. However, the quality of the suspended red blood cells (SRBCs) obtained from individuals at high altitudes such as Tibetan plateau migrants after storage has not been studied. In this study, we compared the storage quality of SRBCs prepared from Tibetan plateau and Deyang lowland populations by adding a normal volume of mannitol-adenine-phosphate (MAP), which is a common additive solution used in blood storage in Asian countries. The storage cell characteristics were examined on days1, 7, 14 and 35.We found higher Hct and Hb levels and viscosity in the high altitude samples. The metabolic rates, including those for electrolytes and lactate, were higher in plateau SRBCs than in lowland SRBCs; these findings were consistent with the higher osmotic fragility and hemolysis of plateau SRBCs throughout the entire storage period. In addition, the reduction rates of 2,3-diphosphoglycerate (2,3-DPG) and oxygen tension to attain 50% oxygen saturation of Hb (P50) in plateau SRBCs were higher than those in lowland SRBCs, and the oxygen delivering capacity in plateau SRBCs was weaker than that in lowland SRBCs. We concluded that the storage quality of plateau SRBCs was inferior to that of lowland SRBCs when using the same concentration of MAP. We suggested that the optimal formula, including the MAP concentration or even a new additive solution, to store the plateau SRBCs must be assessed and regulated.  相似文献   

15.
Tamoxifen (TAM), the antiestrogenic drug most widely prescribed in the chemotherapy of breast cancer, induces changes in normal discoid shape of erythrocytes and hemolytic anemia. This work evaluates the effects of TAM on isolated human erythrocytes, attempting to identify the underlying mechanisms on TAM-induced hemolytic anemia and the involvement of biomembranes in its cytostatic action mechanisms. TAM induces hemolysis of erythrocytes as a function of concentration. The extension of hemolysis is variable with erythrocyte samples, but 12.5 microM TAM induces total hemolysis of all tested suspensions. Despite inducing extensive erythrocyte lysis, TAM does not shift the osmotic fragility curves of erythrocytes. The hemolytic effect of TAM is prevented by low concentrations of alpha-tocopherol (alpha-T) and alpha-tocopherol acetate (alpha-TAc) (inactivated functional hydroxyl) indicating that TAM-induced hemolysis is not related to oxidative membrane damage. This was further evidenced by absence of oxygen consumption and hemoglobin oxidation both determined in parallel with TAM-induced hemolysis. Furthermore, it was observed that TAM inhibits the peroxidation of human erythrocytes induced by AAPH, thus ruling out TAM-induced cell oxidative stress. Hemolysis caused by TAM was not preceded by the leakage of K(+) from the cells, also excluding a colloid-osmotic type mechanism of hemolysis, according to the effects on osmotic fragility curves. However, TAM induces release of peripheral proteins of membrane-cytoskeleton and cytosol proteins essentially bound to band 3. Either alpha-T or alpha-TAc increases membrane packing and prevents TAM partition into model membranes. These effects suggest that the protection from hemolysis by tocopherols is related to a decreased TAM incorporation in condensed membranes and the structural damage of the erythrocyte membrane is consequently avoided. Therefore, TAM-induced hemolysis results from a structural perturbation of red cell membrane, leading to changes in the framework of the erythrocyte membrane and its cytoskeleton caused by its high partition in the membrane. These defects explain the abnormal erythrocyte shape and decreased mechanical stability promoted by TAM, resulting in hemolytic anemia. Additionally, since membrane leakage is a final stage of cytotoxicity, the disruption of the structural characteristics of biomembranes by TAM may contribute to the multiple mechanisms of its anticancer action.  相似文献   

16.
The saline-adenine-glucose-mannitol (SAGM) solution for resuspension of red cells was evaluated on 30 blood units tested over 42 days and compared to 5 red cell concentrates collected on the conventional CPD medium. Total and extra-cellular hemoglobin, potassium, pH, ATP and DPG concentrations, osmotic fragility, schizocyte formation, and red cell antigenicity were studied through the storage period. Chromium survival studies of autologous donated red cells were performed in 10 donors. Red cell concentrates resuspended in SAGM solution showed at the 35th day of conservation at 4 degrees C, a mean storage hemolysis of only 0.66%, an ATP concentration of 67% of the initial value, a schizocyte proportion of less than 1.5%, a mean 24 hour posttransfusion viability of 88.33% and a mean red cell T 1/2 survival of 25 days 10 hours. No alteration of common blood group antigens could be found after storage of red cells for 42 days.  相似文献   

17.
A mathematical model of erythrocyte lysis in isotonic solution of ammonium chloride is presented in frames of a statistical approach. The model is used to evaluate several parameters of mature erythrocytes (volume, surface area, hemoglobin concentration, number of anionic exchangers on membrane, elasticity and critical tension of membrane) through their sphering and lysis measured by a scanning flow cytometer (SFC). SFC allows measuring the light-scattering pattern (indicatrix) of an individual cell over the angular range from 10° to 60°. Comparison of the experimentally measured and theoretically calculated light scattering patterns allows discrimination of spherical from non-spherical erythrocytes and evaluation of volume and hemoglobin concentration for individual spherical cells. Three different processes were applied for erythrocytes sphering: (1) colloid osmotic lysis in isotonic solution of ammonium chloride, (2) isovolumetric sphering in the presence of sodium dodecyl sulphate and albumin in neutrally buffered isotonic saline, and (3) osmotic fragility test in hypotonic media. For the hemolysis in ammonium chloride, the evolution of distributions of sphered erythrocytes on volume and hemoglobin content was monitored in real-time experiments. The analysis of experimental data was performed in the context of a statistical approach, taking into account that parameters of erythrocytes vary from cell to cell.  相似文献   

18.
Chronic hypophosphatemia in humans is associated with a slow depletion of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) in erythrocytes, combined with shape alteration, impaired deformability, and viability of the cells. Likewise, incubation of erythrocytes in alkaline solution is associated with ATP depletion. Since in hyperventilation both hypophosphatemia and alkalosis are present, we have investigated red cell organic phosphates, shape, deformability, and osmotic fragility before, during, and after 20 min of voluntary hyperventilation. On the average, red cell ATP decreased by 42%, the blood pH increased by 0.2 units, and plasma inorganic phosphorus decreased by 46% compared with the initial values. Red cell 2,3-DPG, shape, deformability, and osmotic fragility remained unchanged. After the end of hyperventilation ATP increased rapidly to control values in parallel with the normalization of the blood pH, whereas inorganic plasma phosphorus remained at the low level observed during hyperventilation. It is concluded that the combined effects of hypophosphatemia and alkalosis in acute hyperventilation lead to an isolated fall of red cell ATP, which occurs as rapid as after total inhibition of red cell glycolysis in vitro.  相似文献   

19.
Didelon J  Mazeron P  Muller S  Stoltz JF 《Biorheology》2000,37(5-6):409-416
The theoretical extinction of blood suspensions submitted to a slow dialysis is analyzed in terms of their NaCl concentration. The model involves two adjustable parameters, chi and K, related to swelling and hemolysis. During swelling, the erythrocyte volume is supposed to vary linearly with the saline concentration. During hemolysis, an exponential decay of the hemoglobin concentration in the erythrocyte is used. The theoretical transmittance curves are consistent with the measurements carried out at a wavelength of 0.808 microm on native and incubated blood samples. Chi and K are relevant parameters to characterize quantitatively the fragility of the erythrocyte membrane. The effect of a non ideal character of the hemoglobin solutions and of normal distributions of chi and K is also discussed.  相似文献   

20.
Several factors have been proposed to influence the red blood cell storage lesion including storage duration, blood component manufacturing methodology, and donor characteristics [1,18]. The objectives of this study were to determine the impact of manufacturing method and donor characteristics on water permeability and membrane quality parameters.Red blood cell units were obtained from volunteer blood donors and grouped according to the manufacturing method and donor characteristics of sex and age. Membrane water permeability and membrane quality parameters, including deformability, hemolysis, osmotic fragility, hematologic indices, supernatant potassium, and supernatant sodium, were determined on day 5 ± 2, day 21, and day 42. Regression analysis was applied to evaluate the contribution of storage duration, manufacturing method, and donor characteristics on storage lesion.This study found that units processed using a whole blood filtration manufacturing method exhibited significantly higher membrane water permeability throughout storage compared to units manufactured using red cell filtration. Additionally, significant differences in hemolysis, supernatant potassium, and supernatant sodium were seen between manufacturing methods, however there were no significance differences between donor age and sex groups.Findings of this study suggest that the membrane-related storage lesion is initiated prior to the first day of storage with contributions by both blood manufacturing process and donor variability. The findings of this work highlight the importance of characterizing membrane water permeability during storage as it can be a predictor of the biophysical and chemical changes that affect the quality of stored red blood cells during hypothermic storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号