首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenotypic traits of 7 independently isolated dam mutants of Escherichia coli have been examined. The mutant strains differ from the wildtype in the following respects: (1) decreased DNA adenine methylase activity in vivo and in vitro; (2) a 14--85-fold increase in spontaneous mutability; (3) decreased survival after ultraviolet irradiation; (4) a 10--21-fold increase in spontaneous induction of lambda phage from lysogens; (5) a 3--17-fold increase in the level of recombination; and (6) inviability of double mutants containing dam- and recB- or recC-. Unmethylated fd phage chromosomes are able to replicate normally in dam- mutants. A mutant strain in which the dcm gene is deleted is viable, showing that the dcm gene product is dispensible for growth.  相似文献   

2.
We have examined the presence of methylated adenine at GATC sequences (Dam phenotype) in the DNA of 23 eubacteria and 13 archaebacteria by using isoshizomer restriction enzymes. We have found a completely Dam+ phenotype in bacteria of nine genera related to the families Enterobacteriaceae, Parvobacteriaceae, and Vibrionaceae, and in the five cyanobacteria tested. We have found a partial Dam+ phenotype in the two archaebacteria Halobacterium saccharovorum and Methanobacterium sp. strain Ivanov. All of the other archaebacteria (three genera) and eubacteria (nine genera) tested were Dam-. Phylogenetic analysis, based on the evolutionary tree of Fox et al. (Science 209:457-463, 1980), indicates that dam methylation in the Escherichia coli lineage appeared recently in bacterial evolution and is restricted to a small range of closely related bacteria.  相似文献   

3.
4.
6-Benzylaminopurine (6-BAP) (1 mg/ml) does not influence the growth of E. coli B cell cultures or the number of [8-14C] labeled N6-methyladenine (m6A) residues in the total DNA [(100.m6A/(A x m6A) = 1.7]. The growth of bacterial cells in the presence of adenine or cytokinins (6-BAP, kinetin, zeatin) (1 mg/ml) was unaccompanied by significant changes in the intracellular content of plasmid pBR 322. The mode of restriction by endonuclease Cfu I hydrolyzing the Gm6ATC site of plasmids pBR 322 from E. coli B cells grown in the presence of adenine or one of the above-mentioned cytokinins is identical. These plasmids also have identical restriction products Mbo I or Sau 3AI. Thus, the cytokinins under study do not markedly affect the methylation of adenine residues in total DNA of E. coli B cell cultures and the GATC sequence in plasmids pBR 322 isolated from these cells.  相似文献   

5.
In Escherichia coli, cytosine DNA methylation is catalyzed by the DNA cytosine methyltransferase (Dcm) protein and occurs at the second cytosine in the sequence 5'CCWGG3'. Although the presence of cytosine DNA methylation was reported over 35?years ago, the biological role of 5-methylcytosine in E.?coli remains unclear. To gain insight into the role of cytosine DNA methylation in E.?coli, we (1) screened the 72 strains of the ECOR collection and 90 recently isolated environmental samples for the presence of the full-length dcm gene using the polymerase chain reaction; (2) examined the same strains for the presence of 5-methylcytosine at 5'CCWGG3' sites using a restriction enzyme isoschizomer digestion assay; and (3) quantified the levels of 5-methyl-2'-deoxycytidine in selected strains using liquid chromatography tandem mass spectrometry. Dcm-mediated cytosine DNA methylation is conserved in all 162 strains examined, and the level of 5-methylcytosine ranges from 0.86% to 1.30% of the cytosines. We also demonstrate that Dcm reduces the expression of ribosomal protein genes during stationary phase, and this may explain the highly conserved nature of this DNA modification pathway.  相似文献   

6.
The dam-3 mutation results in a five-fold reduction in the number of 6-methyl-adenine (6-meA) residues in the DNA of E. coli K12 or phage lambda. The DNA of phage fd appears to be devoid of 6-meA when propagated on dam-3 bacteria. The phenotypic differences between dam-3 and dam+ bacteria include: (i) increased free phage in lysogenic dam-3 cultures, (2) increased sensitivity to methyl methanesulfonate (MMS), (3) inviability of dam-3 lex-I strains, (4) lower molecular weight of DNA in dam-3 bacteria in the absence of DNA ligase and (5) increased rate of DNA degradation in dam-3 recA strains.  相似文献   

7.
Escherichia coli MutY is an adenine DNA glycosylase active on DNA substrates containing A/G, A/C, or A/8-oxoG mismatches. Although MutY can form a covalent intermediate with its DNA substrates, its possession of 3' apurinic lyase activity is controversial. To study the reaction mechanism of MutY, the conserved Asp-138 was mutated to Asn and the reactivity of this mutant MutY protein determined. The glycosylase activity was completely abolished in the D138N MutY mutant. The D138N mutant and wild-type MutY protein also possessed different DNA binding activities with various mismatches. Several lysine residues were identified in the proximity of the active site by analyzing the imino-covalent MutY-DNA intermediate. Mutation of Lys-157 and Lys-158 both individually and combined, had no effect on MutY activities but the K142A mutant protein was unable to form Schiff base intermediates with DNA substrates. However, the MutY K142A mutant could still bind DNA substrates and had adenine glycosylase activity. Surprisingly, the K142A mutant MutY, but not the wild-type enzyme, could promote a beta/delta-elimination on apurinic DNA. Our results suggest that Asp-138 acts as a general base to deprotonate either the epsilon-amine group of Lys-142 or to activate a water molecule and the resulting apurinic DNA then reacts with Lys-142 to form the Schiff base intermediate with DNA. With the K142A mutant, Asp-138 activates a water molecule to attack the C1' of the adenosine; the resulting apurinic DNA is cleaved through beta/delta-elimination without Schiff base formation.  相似文献   

8.
The structure of the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase in complex with cognate DNA was determined at 1.89 A resolution in the presence of S-adenosyl-L-homocysteine. DNA recognition and the dynamics of base-flipping were studied by site-directed mutagenesis, DNA methylation kinetics and fluorescence stopped-flow experiments. Our data illustrate the mechanism of coupling of DNA recognition and base-flipping. Contacts to the non-target strand in the second (3') half of the GATC site are established by R124 to the fourth base-pair, and by L122 and P134 to the third base-pair. The aromatic ring of Y119 intercalates into the DNA between the second and third base-pairs, which is essential for base-flipping to occur. Compared to previous published structures of bacteriophage T4 Dam, three major new observations are made in E.coli Dam. (1) The first Gua is recognized by K9, removal of which abrogates the first base-pair recognition. (2) The flipped target Ade binds to the surface of EcoDam in the absence of S-adenosyl-L-methionine, which illustrates a possible intermediate in the base-flipping pathway. (3) The orphaned Thy residue displays structural flexibility by adopting an extrahelical or intrahelical position where it is in contact to N120.  相似文献   

9.
The methylation of transfer RNA in Escherichia coli   总被引:3,自引:0,他引:3  
  相似文献   

10.
Mechanism of adenine toxicity in Escherichia coli   总被引:4,自引:3,他引:1       下载免费PDF全文
The mechanism of adenine toxicity in an hpt gpt strain of Escherichia coli that is extremely sensitive to adenine inhibition was investigated. Adenine-resistant derivatives had secondary mutations in adeninephosphoribosyltransferase or the purR repressor. Growth studies with various purine salvage pathway mutants and the ability of guanosine to prevent adenine toxicity indicated that adenine exerts its toxic effects by depleting guanine nucleotide pools. In the presence of adenine, ATP pools increased twofold in wild-type cells and stabilized after 5 min. In contrast, ATP pools continued to rise in hpt gpt cells up to 25 min and increased sevenfold after adenine addition. hpt gpt cells were shown to have higher levels of adeninephosphoribosyltransferase than did the wild-type cells. In response to adenine addition, GTP pools dropped three- to fourfold in all strains tested. Although GTP levels returned to near normal values in wild-type cells after 35 min, no restoration of GTP pools was observed in the hpt gpt strain during this period. Measurements of guanine pools before and after the addition of adenine indicated that guaninephosphoribosyltransferase plays an important role in maintaining GTP pools by converting the free guanine to GMP during guanine nucleotide depletion.  相似文献   

11.
Summary Methylation of adenine in the GATC-sequence of the-35 region of the trpR promoter decreases activity by 2–3 fold.  相似文献   

12.
13.
Studies on the in vivo methylation of DNA in Escherichia coli 15T   总被引:6,自引:0,他引:6  
  相似文献   

14.
M G Marinus  A Poteete  J A Arraj 《Gene》1984,28(1):123-125
Using a multicopy plasmid in which the tac promoter has been placed in front of the dam gene of Escherichia coli K-12, we show that levels of DNA adenine methylase activity are correlated with the spontaneous mutation frequency.  相似文献   

15.
The E. coli dam (DNA adenine methylase) enzyme is known to methylate the sequence GATC. A general method for cloning sequence-specific DNA methylase genes was used to isolate the dam gene on a 1.14 kb fragment, inserted in the plasmid vector pBR322. Subsequent restriction mapping and subcloning experiments established a set of approximate boundaries of the gene. The nucleotide sequence of the dam gene was determined, and analysis of that sequence revealed a unique open reading frame which corresponded in length to that necessary to code for a protein the size of dam. Amino acid composition derived from this sequence corresponds closely to the amino acid composition of the purified dam protein. Enzymatic and DNA:DNA hybridization methods were used to investigate the possible presence of dam genes in a variety of prokaryotic organisms.  相似文献   

16.
17.
The oriC unwinding by dam methylation in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
H Yamaki  E Ohtsubo  K Nagai    Y Maeda 《Nucleic acids research》1988,16(11):5067-5073
It has been shown that dam methylation is important in the regulation of initiation of DNA replication in E.coli. The question then arises as to whether dam methylation in the oriC region mediates any structural changes in DNA involved in the regulation of initiation of DNA replication. We demonstrate that the thermal melting temperature of the oriC region is lowered by adenine methylation at GATC sites. The regulation of initiation of DNA replication by dam methylation may be attributed to the ease of unwinding at GATC sites in oriC.  相似文献   

18.
19.
The W3110 strain of Escherichia coli K-12 is unusually sensitive to adenine. Inhibition of growth is relieved by a combination of thiamine and uridine (or cytidine). In the presence of histidine, inhibition is more severe and is relieved by a combination of thiamine, glycine, uridine (or cytidine), and inosine (or guanosine).  相似文献   

20.
The DNA adenine methylation status on specific 5'-GANTC-3' sites and its change during the establishment of plant-microbe interactions was demonstrated in several species of alpha-proteobacteria. Restriction landmark genome scanning (RLGS), which is a high-resolution two dimensional DNA electrophoresis method, was used to monitor the genomewide change in methylation. In the case of Mesorhizobium loti MAFF303099, real RLGS images obtained with the restriction enzyme MboI, which digests at GATC sites, almost perfectly matched the virtual RLGS images generated based on genome sequences. However, only a few spots were observed when the restriction enzyme HinfI was used, suggesting that most GANTC (HinfI) sites were tightly methylated and specific sites were unmethylated. DNA gel blot analysis with the cloned specifically unmethylated regions (SUMs) showed that some SUMs were methylated differentially in bacteroids compared to free-living bacteria. SUMs have also been identified in other symbiotic and parasitic bacteria. These results suggest that DNA adenine methylation may contribute to the establishment and/or maintenance of symbiotic and parasitic relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号