首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 9 毫秒
1.
The present study explores the effect of oligonucleotide composition on the mechanism of retention to l ‐methionine agarose support by chromatography and saturation transfer difference (STD)‐nuclear magnetic resonance (NMR) techniques. All chromatographic experiments were performed using 1.5 M (NH4)2SO4. The binding profiles obtained by chromatography show that oligonucleotides with thymine had the highest retention time. In general, the larger homo‐oligonucleotides are more retained to the l ‐methionine agarose support. Moreover, the study with hetero‐oligonucleotides confirms that the presence of guanine reduces the retention on the l ‐methionine chromatographic support. These results are in accord with STD‐NMR experiments, which show that the strongest signals were observed for the methyl group of thymine, and no STD signals were observed for the guanosine protons. Finally, the retention behaviour of linear plasmid DNA (pDNA) with different sizes and base composition (2.7‐kbp pUC19, 6.05‐kbp pVAX1‐LacZ, 7.4‐kbp pVAX1‐LacZgag and 14‐kbp pcDNA‐based plasmid) was also evaluated by chromatography. The results indicate that the underlying mechanism of retention involves not only hydrophobic interactions but also other elementary interactions responsible for the biorecognition of pDNA molecules by l ‐methionine ligands. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A sequence derived from the epithelial receptor tyrosine kinase Ros (pY2267) represents a high‐affinity binding partner for protein tyrosine phosphatase SHP‐1 and was recently used as lead structure to analyze the recognition requirements for the enzyme's N‐SH2 domain. Here, we focused on a set of peptides comprising C‐terminally extended linear and conformationally constrained side chain‐bridged cyclic N‐SH2 ligands based on the consensus sequence LxpYhxh(h/b)(h/b) (x = any amino acid, h = hydrophobic, and b = basic residue). Furthermore, the bivalent peptides described were designed to modulate the activity of SHP‐1 through binding to both, the N‐SH2 domain as well as an independent binding site on the surface of the catalytic domain (PTP domain). Consistent with previous experimental findings, surface plasmon resonance experiments revealed dissociation constants of most compounds in the low micromolar range. One peptide, EGLNpYc[KVD]MFPAPEEE? NH2, displayed favorable binding affinity, but reduced ability to stimulate SHP‐1. Docking experiments revealed that the binding of this ligand occurs in binding mode I, recently described to lead to an inhibited activation of SHP‐1. In summary, results presented in this study suggest that inhibitory N‐SH2 ligands of SHP‐1 may be obtained by designing bivalent compounds that associate with the N‐SH2 domain and simultaneously occupy a specific binding site on the PTP domain. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 102–112, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
4.
The incretin hormone glucagon‐like peptide‐1 (GLP‐1) has been subject to substantial pharmaceutical research regarding the treatment of type 2 diabetes mellitus. However, quantification of GLP‐1 levels remains complicated due to the low circulation concentration and concurrent existence of numerous metabolites, homologous peptides, and potentially introduced GLP‐1 receptor agonists. Surface plasmon resonance (SPR) facilitates real‐time monitoring allowing a more detailed characterisation of the interaction compared with conventional enzyme‐linked immunosorbent assays (ELISA). In this paper, we describe the development of the first SPR assays for characterisation of anti‐GLP‐1 antibodies for ELISA purposes. Binding responses were obtained on covalently immobilised anti‐GLP‐1 antibodies at 12°C, 25°C, and 40°C and fitted to a biomolecular (1:1) interaction model showing association rates of 1.01 × 103 to 4.54 × 103 M?1 s?1 and dissociation rates of 3.56 × 10?5 to 1.56 × 10?3 s?1 leading to affinities of 35.2 to 344 nM, depending on the temperature. Determination of thermodynamic properties revealed an enthalpy driven interaction (ΔH < ΔS < 0) with higher affinities at lower temperatures due to the formation and stabilisation of hydrogen bonds within the binding site primarily composed of polar amino acids (ΔCp < 0). Pair‐wise epitope mapping was performed on captured anti‐GLP‐1 antibodies followed by subsequent interaction with GLP‐1 (7‐36) and other anti‐GLP‐1 antibodies. A global evaluation of every binding response led to an epitope map elucidating the potential of various anti‐GLP‐1 antibody pairs for sandwich ELISA and hence pinpointing the optimal antibody combinations. The SPR assays proved capable of providing vital information for ELISA development endorsing it as a useful optimisation tool.  相似文献   

5.
The C-terminal domain of p53 comprises a linker, the tetramerization domain and the regulatory domain, and contains at least seven sites of potential post-translational modification. An improved strategy was developed for the synthesis of large peptides that contain phosphorylated amino acids and p53(303-393), a 91-amino acid peptide, and three post-translationally modified derivatives were synthesized through the sequential condensation of three partially protected segments. Peptide thiolesters were prepared using the sulfonamide-based 'safety-catch' resin approach and employing Fmoc-based solid-phase peptide synthesis. At the N-terminus of the middle building block, a photolabile protecting group, 3,4-dimethoxy-6-nitrobenzyloxycarbonyl, was incorporated to differentiate the N-terminal amino group from the side-chain amino groups. Two sequential couplings were accomplished following this protection strategy. The synthetic products, p53(303-393) and its phosphorylated or acetylated derivatives, exhibited the ability to bind specifically to supercoiled DNA, which is one of the characteristics of this domain.  相似文献   

6.
Poly(ADP‐ribose) polymerase‐1 (PARP‐1) is a mammalian enzyme that attaches long branching chains of ADP‐ribose to specific nuclear proteins, including itself. Because its activity in vitro is dependent upon interaction with broken DNA, it has been postulated that PARP‐1 plays an important role in DNA strand‐break repair in vivo. The exact mechanism of binding to DNA and the structural determinants of binding remain to be defined, but regions of transition from single‐stranded to double‐strandedness may be important recognition sites. Here we employ surface plasmon resonance (SPR) to investigate this hypothesis. Oligodeoxynucleotide (ODN) substrates that mimic DNA with different degrees of single‐strandedness were used for measurements of both PARP‐1/DNA binding kinetics and PARP‐1's enzyme activities. We found that binding correlated with activity, but was unrelated to single‐strandedness of the ODN. Instead, PARP‐1 binding and activity were highest on ODNs that modeled a DNA double‐strand break (DSB). These results provide support for PARP‐1 recognizing and binding DSBs in a manner that is independent of single‐stranded features, and demonstrate the usefulness of SPR for simultaneously investigating both PARP‐1 binding and PARP‐1 auto‐poly(ADP‐ribosyl)ation activities within the same in vitro system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The sequence-specific DNA binding of recombinant p42 and p51 ETS1 oncoprotein was examined quantitatively to determine whether the loss of the Exon VII phosphorylation domain in p42 ETS1 or the phosphorylation of expressed Exon VII in p51 ETS1 had an effect on DNA binding activity. The kinetics of sequence-specific DNA binding was measured using real-time changes in surface plasmon resonance with BIAcore (registered trademark, Pharmacia Biosensor) technology. The real-time binding of p42 and p51 ETS1 displayed significant differences in kinetic behavior. p51 ETS1 is characterized by a fast initial binding and conversion to a stable complex, whereas p42 ETS1 exhibits a slow initial binding and conversion to a stable complex. All of the p51 ETS1 DNA binding states are characterized by rapid turnover, whereas the p42 ETS1 DNA binding states are 4-20 times more stable. A model describing these kinetic steps is presented. Stoichiometric titrations of either p42 or p51 ETS1 with specific oligonucleotides show 1:1 complex formation. The DNA sequence specificity of the p42 and p51 ETS1 as determined by mutational analysis was similar. The in vitro phosphorylation of p51 ETS1 by CAM kinase II obliterates its binding to specific DNA, suggesting that the regulation of p51 ETS1 sequence-specific DNA binding occurs through phosphorylation by a calcium-dependent second messenger. The p42 ETS1 lacks this regulatory domain (Exon VII), and binding to its specific DNA sequence is not sensitive to calcium signaling.  相似文献   

8.
The bacterial periplasmic methionine‐binding protein MetQ is involved in the import of methionine by the cognate MetNI methionine ATP binding cassette (ABC) transporter. The MetNIQ system is one of the few members of the ABC importer family that has been structurally characterized in multiple conformational states. Critical missing elements in the structural analysis of MetNIQ are the structure of the substrate‐free form of MetQ, and detailing how MetQ binds multiple methionine derivatives, including both l ‐ and d ‐methionine isomers. In this study, we report the structures of the Neisseria meningitides MetQ in substrate‐free form and in complexes with l ‐methionine and with d ‐methionine, along with the associated binding constants determined by isothermal titration calorimetry. Structures of the substrate‐free (N238A) and substrate‐bound N. meningitides MetQ are related by a “Venus‐fly trap” hinge‐type movement of the two domains accompanying methionine binding and dissociation. l ‐ and d ‐methionine bind to the same site on MetQ, and this study emphasizes the important role of asparagine 238 in ligand binding and affinity. A thermodynamic analysis demonstrates that ligand‐free MetQ associates with the ATP‐bound form of MetNI ~40 times more tightly than does liganded MetQ, consistent with the necessity of dissociating methionine from MetQ for transport to occur.  相似文献   

9.
The transmembrane subunit (gp41) of the envelope glycoprotein of HIV‐1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR) of gp41 is highly conserved and contains epitopes of broadly neutralizing antibodies. The transmembrane (TM) domain of gp41 not only anchors the envelope glycoprotein complex in the viral membrane but also dynamically affects the interactions of the MPR with the membrane. While high‐resolution X‐ray structures of some segments of the MPR were solved in the past, they represent the post‐fusion forms. Structural information on the TM domain of gp41 is scant and at low resolution. Here we describe the design, expression and purification of a protein construct that includes MPR and the transmembrane domain of gp41 (MPR‐TMTEV‐6His), which reacts with the broadly neutralizing antibodies 2F5 and 4E10 and thereby may represent an immunologically relevant conformation mimicking a prehairpin intermediate of gp41. The expression level of MPR‐TMTEV‐6His was improved by fusion to the C‐terminus of Mistic protein, yielding ~1 mg of pure protein per liter. The isolated MPR‐TMTEV‐6His protein was biophysically characterized and is a monodisperse candidate for crystallization. This work will enable further investigation into the structure of MPR‐TMTEV‐6His, which will be important for the structure‐based design of a mucosal vaccine against HIV‐1.  相似文献   

10.
11.
This work describes the development of biophysical unbiased methods to study the interactions between new designed compounds and carbonic anhydrase II (CAII) enzyme. These methods have to permit both a screening of a series of sulfonamide derivatives and the identification of a lead compound after a thorough study of the most promising molecules. Interactions data were collected using surface plasmon resonance (SPR) and thermal shift assay (TSA). In the first step, experiments were performed with bovine CAII isoform and were extended to human CAII. Isothermal titration calorimetry (ITC) experiments were also conducted to obtain thermodynamics parameters necessary for the processing of the TSA data. Results obtained with this reference methodology demonstrate the effectiveness of SPR and TSA. KD values obtained from SPR data were in perfect accordance with ITC. For TSA, despite the fact that the absolute values of KD were quite different, the same affinity scale was obtained for all compounds. The binding affinities of the analytes studied vary by more than 50 orders of magnitude; for example, the KD value determined by SPR were 6 ± 4 and 299 ± 25 nM for compounds 1 and 3, respectively. This paper discusses some of the theoretical and experimental aspects of the affinity‐based methods and evaluates the protein consumption to develop methods for the screening of further new compounds. The double interest of SPR, that is, for screening and for the quick thorough study of the interactions parameters (ka, kd, and KD), leads us to choose this methodology for the study of new potential inhibitors. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Salicylic acid (SA) is a small phenolic molecule that not only is the active ingredient in the multi‐functional drug aspirin, but also serves as a plant hormone that affects diverse processes during growth, development, responses to abiotic stresses and disease resistance. Although a number of SA‐binding proteins (SABPs) have been identified, the underlying mechanisms of action of SA remain largely unknown. Efforts to identify additional SA targets, and thereby elucidate the complex SA signaling network in plants, have been hindered by the lack of effective approaches. Here, we report two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance‐based technology to identify and evaluate candidate SABPs from Arabidopsis. Using these approaches, multiple proteins, including the E2 subunit of α‐ketoglutarate dehydrogenase and the glutathione S‐transferases GSTF2, GSTF8, GSTF10 and GSTF11, were identified as SABPs. Their association with SA was further substantiated by the ability of SA to inhibit their enzymatic activity. The photoaffinity labeling and surface plasmon resonance‐based approaches appear to be more sensitive than the traditional approach for identifying plant SABPs using size‐exclusion chromatography with radiolabeled SA, as these proteins exhibited little to no SA‐binding activity in such an assay. The development of these approaches therefore complements conventional techniques and helps dissect the SA signaling network in plants, and may also help elucidate the mechanisms through which SA acts as a multi‐functional drug in mammalian systems.  相似文献   

13.
Influenza is one of the most common infections of the upper respiratory tract. Antiviral drugs that are currently used to treat influenza, such as oseltamivir and zanamivir, are neuraminidase (NA) inhibitors. However, the virus may develop resistance through single‐point mutations of NA. Antiviral resistance is currently monitored by a labelled enzymatic assay, which can be inconsistent because of the short half‐life of the labelled product and variations in the assay conditions. In this paper, we describe a label‐free surface plasmon resonance (SPR) assay for measuring the binding affinity of NA‐drug interactions. Wild‐type (WT) NA and a histidine 274 tyrosine (H274Y) mutant were expressed in High Five? (Trichoplusia ni) insect cells. A spacer molecule (1,6‐hexanediamine) was site‐specifically conjugated to the 7‐hydroxyl group of zanamivir, which is not involved in binding to NA, and the construct was immobilized onto a SPR sensor Chip to obtain a final immobilization response of 431 response units. Binding responses obtained for WT and H274Y mutant NAs were fitted to a simple Langmuir 1:1 model with drift to obtain the association (ka) and dissociation (kd) rate constants. The ratio between the binding affinities for the two isoforms was comparable to literature values obtained using labelled enzyme assays. Significant potential exists for an extension of this approach to test for drug resistance of further NA mutants against zanamivir and other antiviral drugs, perhaps paving the way for a reliable SPR biosensor assay that may replace labelled enzymatic assays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
New Delhi metallo‐beta‐lactamase‐1(NDM‐1)‐carrying isolates, which are resistant to most clinical used antibiotics except for tigecycline and colistin, have been found worldwide. Cathelicidin‐BF (BF‐30) is found in the venom of the snake Bungarus fasciatus and exhibits broad antimicrobial activity. Cbf‐K16 and Cbf‐A7A13 were obtained by mutating Lys16, Ala7, and Ala13 of BF‐30, respectively. To investigate their antimicrobial activities against NDM‐1 carrying bacteria, recombinant Escherichia coli BL21 (DE3)‐NDM‐1 with high NDM‐1 activity was constructed by inserting the Klebsiella pneumoniae NDM‐1 gene (GenBank accession no. HQ328085) into a pET28a vector and transforming it into E. coli BL21 (DE3). The peptides showed effective antimicrobial activities against NDM‐1‐carrying E. coli, and the minimum inhibitory concentrations of Cbf‐K16 and Cbf‐A7A13 were only 4 and 8 µg/ml, whereas those of minimum bactericidal concentrations were 8 and 16 µg/ml, respectively. A time course experiment showed that colony forming unit counts rapidly decreased, and bacteria were thoroughly eliminated within 3 and 6 h by the Cbf‐K16 and Cbf‐A7A13 treatments, respectively. The peptides penetrated the bacterial cell membrane and enabled β‐galactosidase leakage, and caused the cytoplasmic membrane to become permeable, and finally bound to the DNA. The genomic DNA of E. coli was completely unable to migrate on an agarose gel after Cbf‐K16 treatment (8 µg/ml). These data demonstrated that Cbf‐K16 and Cbf‐A7A13 possess effective antimicrobial activity against drug‐resistant strains, including NDM‐1 carrying E. coli BL21 (DE3)‐NDM‐1, by binding to DNA after penetrating the cytoplasmic membrane in vitro, which may have potential therapeutic value for the treatment of NDM‐1‐carrying bacterial infections. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Synthetic N‐methyl imidazole and N‐pyrrole containing polyamides (PAs) that can form “stacked” dimers can be programmed to target and bind to specific DNA sequences and control gene expression. To accomplish this goal, the development of PAs with lower molecular mass which allows for the molecules to rapidly penetrate cells and localize in the nucleus, along with increased water solubility, while maintaining DNA binding sequence specificity and high binding affinity is key. To meet these challenges, six novel f‐ImPy*Im PA derivatives that contain different orthogonally positioned moieties were designed to target 5′‐ACGCGT‐3′. The synthesis and biophysical characterization of six f‐ImPy*Im were determined by CD, ΔTM, DNase I footprinting, SPR, and ITC studies, and were compared with those of their parent compound, f‐ImPyIm. The results gave evidence for the minor groove binding and selectivity of PAs 1 and 6 for the cognate sequence 5′‐ACGCGT‐3′, and with strong affinity, Keq = 2.8 × 108 M?1 and Keq = 6.2 × 107 M?1, respectively. The six novel PAs presented in this study demonstrated increased water solubility, while maintaining low molecular mass, sequence specificity, and binding affinity, addressing key issues in therapeutic development. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 497–507, 2013.  相似文献   

16.
17.
We showed that the alpha-CH(2) --> NH substitution in octanoyl-CoA alters the ground and transition state energies for the binding of the CoA ligands to medium-chain acyl-CoA dehydrogenase (MCAD), and such an effect is caused by a small electrostatic difference between the ligands. To ascertain the extent that the electrostatic contribution of the ligand structure and/or the enzyme site environment modulates the thermodynamics of the enzyme-ligand interaction, we undertook comparative microcalorimetric studies for the binding of 2-azaoctanoyl-CoA (alpha-CH(2) --> NH substituted octanoyl-CoA) and octenoyl-CoA to the wild-type and Glu-376 --> Gln mutant enzymes. The experimental data revealed that both enthalpy (DeltaH degrees ) and heat capacity changes (DeltaC(p) degrees ) for the binding of 2-azaoctanoyl-CoA (DeltaH degrees (298) = -21.7 +/- 0.8 kcal/mole, DeltaC(p) degrees = -0.627 +/- 0.04 kcal/mole/K) to the wild-type MCAD were more negative than those obtained for the binding of octenoyl-CoA (DeltaH degrees (298) = -17.2 +/- 1.6 kcal/mole, DeltaC(p) degrees = -0.526 +/- 0.03 kcal/mole/K). Of these, the decrease in the magnitude of DeltaC(p) degrees for the binding of 2-azaoctanoyl-CoA (vis-à-vis octenoyl-CoA) to the enzyme was unexpected, because the former ligand could be envisaged to be more polar than the latter. To our further surprise, the ligand-dependent discrimination in the above parameters was completely abolished on Glu-376 --> Gln mutation of the enzyme. Both DeltaH degrees and DeltaC(p) degrees values for the binding of 2-azaoctanoyl-CoA (DeltaH degrees (298) = -13.3 +/- 0.6 kcal/mole, DeltaC(p) degrees = -0.511 +/- 0.03 kcal/mole/K) to the E376Q mutant enzyme were found to be correspondingly identical to those obtained for the binding of octenoyl-CoA (DeltaH degrees (298) = -13.2 +/- 0.6 kcal/mole, DeltaC(p) degrees = -0.520 +/- 0.02 kcal/mole/K). However, in neither case could the experimentally determined DeltaC(p) degrees values be predicted on the basis of the changes in the water accessible surface areas of the enzyme and ligand species. Arguments are presented that the origin of the above thermodynamic differences lies in solvent reorganization and water-mediated electrostatic interaction between ligands and enzyme site groups, and such interactions are intrinsic to the molecular basis of the enzyme-ligand complementarity.  相似文献   

18.

Background

The Nrf2–Keap1 interaction is the major regulatory pathway for cytoprotective responses against oxidative and electrophilic stresses. Keap1, a substrate protein of a Cul3-dependent E3 ubiquitin ligase complex, is a negative regulator of Nrf2. The use of chemicals to regulate the interaction between Keap1 and Nrf2 has been proposed as a strategy for the chemoprevention of degenerative diseases and cancers.

Results

The interactions between Keap1 and Nrf2 in vitro and in vivo were investigated using fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) strategies in our study. Nrf2 with its N-terminal fused to eGFP and Keap1 with its C-terminal fused to mCherry were expressed and purified in vitro. When purified eGFP-Nrf2 and Keap1-mChrry proteins were mixed together, a strong FRET signal could be detected, indicating an efficient energy transfer from eGFP to mCherry. Moreover, the FRET was detected in vivo using confocal microscopy in colon cancer HCT-116 cells that were co-transfected with eGFP-Nrf2 and Keap1-mCherry. Finally, using an eGFP BiFC approach, the Keap1-Nrf2 interaction was also detected in MCF7 cells by transfecting eGFP N-terminal fused to Nrf2 (eN158-Nrf2) and eGFP C-terminal fused to Keap1 (eC159-Keap1). Using the BiFC and FRET systems, we demonstrated that the prototypical Nrf2-activiting compound tBHQ and the antitumor drug F-dUrd might interfere with the intracellular interaction between Keap1 and Nrf2 whereas the 5-Fu have little role in activating the protective response of Nrf2 pathway in cancer cells.

Conclusions

By analyzing the perturbation of the energy transfer between the donor and acceptor fluorophores and the bimolecular fluorescence complementation of eGFP, we can screen potential inhibitors for the interaction between Keap1 and Nrf2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号