共查询到20条相似文献,搜索用时 15 毫秒
1.
In most animals, multiple genes encode protein kinase C (PKC) proteins. Pharmacological studies have revealed numerous roles for this protein family, yet the in vivo roles of specific PKC proteins and the functional targets of PKC activation are poorly understood. We find that in Caenorhabditis elegans, two PKC genes, pkc-1 and tpa-1, are required for mechanosensory response; the role of the nPKCε/η ortholog, pkc-1, was examined in detail. pkc-1 function is required for response to nose touch in adult C. elegans and pkc-1 likely acts in the interneurons that regulate locomotion which are direct synaptic targets of mechanosensory neurons. Previous studies have suggested numerous possible targets of pkc-1; our analysis indicates that pkc-1 may act via the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway. We find that ERK/MAPK pathway function is required for mechanosensory response in C. elegans and that at least one component of this pathway, lin-45 Raf, acts in interneurons of the mechanosensory circuit. Genetic analysis indicates that lin-45 and pkc-1 act together to regulate nose touch response. Thus, these results functionally link two conserved signaling pathways in adult C. elegans neurons and define distinct roles for PKC genes in vivo. 相似文献
2.
3.
《Neuron》2022,110(3):470-485.e7
4.
Smith MP Laws TR Atkins TP Oyston PC de Pomerai DI Titball RW 《FEMS microbiology letters》2002,210(2):181-185
Caenorhabditis elegans has previously been used as an alternative to mammalian models of infection with bacterial pathogens. We have developed a liquid-based assay to measure the effect of bacteria on the feeding ability of C. elegans. Using this assay we have shown that Pseudomonas aeruginosa strain PA14, Burkholderia pseudomallei and Yersinia pestis were able to inhibit feeding of C. elegans strain N2. An increase in sensitivity of the assay was achieved by using C. elegans mutant phm-2, in place of the wild-type strain. Using this assay,P. aeruginosa PA01 inhibited the feeding of C. elegans mutant phm-2. Such liquid-based feeding assays are ideally suited to the high-throughput screening of mutants of bacterial pathogens. 相似文献
5.
Kato M Slack FJ 《Biology of the cell / under the auspices of the European Cell Biology Organization》2008,100(2):71-81
miRNAs (microRNAs) were first discovered as critical regulators of developmental timing events in Caenorhabditis elegans. Subsequent studies have shown that miRNAs and cellular factors necessary for miRNA biogenesis are conserved in many organisms, suggesting the importance of miRNAs during developmental processes. Indeed, mutations in the miRNA-processing pathway induce pleiotropic defects in development, which accompany perturbation of correct expression of target genes. However, control of gene expression in development is not the only function of miRNAs. Recent work has provided new insights into the role of miRNAs in various biological events, including aging and cancer. C. elegans continues to be helpful in facilitating a further understanding of miRNA function in human diseases. 相似文献
6.
Christian Frkjr‐Jensen Katie S. Kindt Rex A. Kerr Hiroshi Suzuki Katya Melnik‐Martinez Beate Gerstbreih Monica Driscol William R. Schafer 《Developmental neurobiology》2006,66(10):1125-1139
Voltage‐gated calcium channels (VGCCs) serve as a critical link between electrical signaling and diverse cellular processes in neurons. We have exploited recent advances in genetically encoded calcium sensors and in culture techniques to investigate how the VGCC α1 subunit EGL‐19 and α2/δ subunit UNC‐36 affect the functional properties of C. elegans mechanosensory neurons. Using the protein‐based optical indicator cameleon, we recorded calcium transients from cultured mechanosensory neurons in response to transient depolarization. We observed that in these cultured cells, calcium transients induced by extracellular potassium were significantly reduced by a reduction‐of‐function mutation in egl‐19 and significantly reduced by L‐type calcium channel inhibitors; thus, a main source of touch neuron calcium transients appeared to be influx of extracellular calcium through L‐type channels. Transients did not depend directly on intracellular calcium stores, although a store‐independent 2‐APB and gadolinium‐sensitive calcium flux was detected. The transients were also significantly reduced by mutations in unc‐36, which encodes the main neuronal α2/δ subunit in C. elegans. Interestingly, while egl‐19 mutations resulted in similar reductions in calcium influx at all stimulus strengths, unc‐36 mutations preferentially affected responses to smaller depolarizations. These experiments suggest a central role for EGL‐19 and UNC‐36 in excitability and functional activity of the mechanosensory neurons. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 相似文献
7.
Multiple Molecular Forms of Acetylcholinesterase in the Nematode Caenorhabditis elegans 总被引:1,自引:3,他引:1
Abstract: Extracts of the nematode Caenorhabditis elegans contain five molecular forms of acetylcholinesterase (AChE) activity that can be separated by a combination of selective solubilization, velocity sedimentation, and ion-exchange chromatography. These are called form IA (5.2s), form IB (4.9.s), form II (6.7s), form III (11.3s), and form IV (13.0s). All except form III are present in significant amounts in rapidly prepared extracts and are probably native; form III is probably derived autolytically from form IV. Most of forms IA and IB can be solubilized by repeated extractions without detergent, whereas forms II, III, and IV require detergent for effective solubilization and may therefore be membrane-bound. High salt concentrations are not required for, and do not aid in, the solubilization of these forms. For all forms, molecular weights and frictional ratios have been estimated by a combination of gel permeation chromatography and velocity sedimentations in both H2O and D2O. The molecular weight estimates range from 83,000 to 357,000 and only form II shows extensive asymmetry. The separated forms have been characterized with respect to substrate affinity, substrate specificity, inhibitor sensitivity, thermal inactivation, and detergent sensitivity. Judging by these properties, C. elegans is like other invertebrates in that none of its cholinesterase forms resembles either the “true” or the “pseudo” cholinesterase of vertebrates. However, internal comparison of the C. elegans forms clearly distinguishes forms IA, III, and IV as a group from forms IB and II; the former are therefore designated “class A” forms, the latter “class B” forms. Genetic evidence indicates that separate genes control class A and class B forms, and that these two classes overlap functionally. Several factors, including kinetic properties, molecular asymmetry, molecular size, and solubility, all suggest that a molecular model of the multiple cholinesterase forms observed in vertebrate electric organs probably does not apply in C. elegans. Potential functional roles and subunit structures of the multiple AChE forms within each C. elegans class are discussed. 相似文献
8.
目的:利用秀丽线虫研发合适的低氧损伤模型,以更好地揭示低氧生理和低氧病理的分子机制.方法:通过对秀丽线虫进行不同时间的低氧处理,系统观察线虫的死亡率、运动功能、细胞形态及相关蛋白表达水平的变化,分析低氧对线虫的损伤情况.结果:氧浓度为0.2%的物理性低氧可引起秀丽线虫多种细胞形态发生变化,进而导致线虫死亡,且死亡率随低... 相似文献
9.
铜在有机体代谢过程中发挥着重要作用, 但过量可产生毒害效应。文章以秀丽隐杆线虫(Caenorhabditis elegans)为模式生物, 寻找多细胞生物中铜代谢调节的关键基因。采用甲基磺酸乙酯(EMS)诱变秀丽隐杆线虫, 通过100 000个杂合基因组的筛选得到两个抗铜突变体ms1和ms2。在筛选培养基上野生型停止发育, 而抗铜突变体则可发育到成虫, 且抗铜性状能稳定遗传。与N2的回交实验表明, ms1的抗铜表型可能由单基因隐性突变导致, ms2的抗铜表型消失, 可能是由多基因突变引起。以CB4856和ms1作为亲本, 构建了F2群, 经SNP定位, 确定ms1突变位点位于染色体II(LGII)上, 进一步对LGII染色体上的8个SNP标记进行分析, 将ms1的突变位点定位在LGII:-6附近。秀丽隐杆线虫抗铜突变体ms1的筛选和定位可为深入研究线虫铜代谢及调控的分子机制提供实验依据。 相似文献
10.
The evolutionary conserved PAR proteins control polarization and asymmetric division in many organisms. Recent work in Caenorhabditis elegans demonstrated that nos-3 and fbf-1/2 can suppress par-2(it5ts) lethality, suggesting that they participate in cell polarity by regulating the function of the anterior PAR-3/PAR-6/PKC-3 proteins. In Drosophila embryos, Nanos and Pumilio are homologous to NOS-3 and FBF-1/2 respectively and control cell polarity by forming a complex with the tumor suppressor Brat to inhibit Hunchback mRNA translation. In this study, we investigated the possibility that Brat could control cell polarity and asymmetric cell division in C. elegans. We found that disrupting four of the five C. elegans Brat homologs (Cebrats) individually results in suppression of par-2(it5ts) lethality, indicating that these genes are involved in embryonic polarity. Two of the Cebrats, ncl-1 and nhl-2, partially restore the localization of PAR proteins at the cortex. While mutations in the four Cebrat genes do not severely impair polarity, they display polarity-associated defects. Surprisingly, these defects are absent from nos-3 mutants. Similarly, while nos-3 controls PAR-6 protein levels, this is not the case for any of the Cebrats. Our results, together with results from Drosophila, indicate that Brat family members function in generating cellular asymmetries and suggest that, in contrast to Drosophila embryos, the C. elegans homologs of Brat and Nanos could participate in embryonic polarity via distinct mechanisms. 相似文献
11.
Jonathan Astin Alyce Merry Jeena Rajan Patricia E Kuwabara 《Briefings in Functional Genomics and Prot》2004,3(1):26-34
The nematode Caenorhabditis elegans is widely used as a model organism for studying many fundamental aspects of development and cell biology, including processes underlying human disease. The genome of C. elegans encodes over 19,000 protein-coding genes and hundreds of non-coding RNAs. The availability of whole genome sequence has facilitated the development of high throughput techniques for elucidating the function of individual genes and gene products. Furthermore, attempts can now be made to integrate these substantial functional genomics data collections and to understand at a global level how the flow of genomic information that is at the core of the central dogma leads to the development of a multicellular organism. 相似文献
12.
13.
利用模式生物线虫评价精对苯二甲酸废水的毒性 总被引:1,自引:0,他引:1
应用模式生物秀丽隐杆线虫,通过生命周期、半数致死天数、生殖速度、产卵数、头部摆动频率和身体弯曲次数等指标对精对苯二甲酸(PTA)废水毒性进行了研究.结果表明,与对照组相比,660 mg·L-1 PTA废水暴露下的线虫生命周期有一定的延长,产卵时间延迟,头部摆动频率降低,身体弯曲次数减少(P<0.05),且PTA废水对线虫生殖能力的影响极显著(P<0.01),暴露于废水中的线虫产卵数大约只有正常产卵数的1/4.最敏感效应指标——产卵数,有望成为该类废水毒性预警预报的潜在生物标志物. 相似文献
14.
以秀丽线虫作为评价蓖麻碱毒性的模式生物,通过测定不同浓度的蓖麻碱提取物对线虫的半致死浓度、生殖能力和体内酶活性的影响,对蓖麻碱的毒性进行初步评价。结果表明,蓖麻碱提取物的48h的LD50为0.977mg/mL,72h的LD50为0.821mg/mL;随着蓖麻碱提取物浓度从0.5mg/mL增加到2.0mg/mL,虫体的SOD活性由(80.669±3.2)U/mg降低至(1.532±0.2)U/mg;CAT活性由(70.947±2.7)U/mg降低至(0.234±2.1)U/mg。说明蓖麻碱提取物浓度越大,毒性越强,线虫体内酶活越低,蓖麻碱提取物可使秀丽线虫生殖能力降低或丧失。 相似文献
15.
16.
食细菌线虫Caenorhabditis elegans的取食偏好性 总被引:1,自引:0,他引:1
通过设置平板培养试验,以模式种线虫 Caenorhabditis elegans 为材料,观察了食细菌线虫的取食行为。结果表明:C. elegans 在取食细菌时对原位土壤中分离的一种Pseudomonas sp细菌存在最大的取食偏好性。这种取食偏好性表现在大部分C. elegans 在24 h内都直接朝Pseudomonas sp迁移,说明C. elegans能通过某种机制识别Pseudomonas sp。距离迁移试验及C. elegans迁移率表明它可能是通过辨别细菌所发出的气味识别它喜欢的食物。C. elegans的繁殖率跟其取食的偏好性是相关的,在迁移率较高的细菌培养基中线虫表现出更高的繁殖率。结果还表明:相对于G+细菌而言, C. elegans 偏好取食G-细菌。为进一步了解土壤生态系统中食细菌线虫与细菌群落结构间相互关系提供了帮助。 相似文献
17.
Savage-Dunn C Maduzia LL Zimmerman CM Roberts AF Cohen S Tokarz R Padgett RW 《Genesis (New York, N.Y. : 2000)》2003,35(4):239-247
In the nematode Caenorhabditis elegans, a TGFbeta-related signaling pathway regulates body size and male tail morphogenesis. We sought to identify genes encoding components or modifiers of this pathway in a large-scale genetic screen. Remarkably, this screen was able to identify essentially all core components of the TGFbeta signaling pathway. Among 34 Small mutants, many mutations disrupt genes encoding recognizable components of the TGFbeta pathway: DBL-1 ligand, DAF-4 type II receptor, SMA-6 type I receptor, and SMA-2, SMA-3, and SMA-4 Smads. Moreover, we find that at least 11 additional complementation groups can mutate to the Small phenotype. Four of these 11 genes, sma-9, sma-14, sma-16, and sma-20 affect male tail morphogenesis as well as body size. Two genes, sma-11 and sma-20, also influence regulation of the developmentally arrested dauer larval stage, suggesting a role in a second characterized TGFbeta pathway in C. elegans. Other genes may represent tissue-specific factors or parallel pathways for body size control. Because of the conservation of TGFbeta signaling pathways, homologs of these genes may be involved in tissue specificity and/or crosstalk of TGFbeta pathways in other animals. 相似文献
18.
利用模式生物秀丽隐杆线虫,考察8种人体必需氨基酸对衰老的影响。首先建立秀丽隐杆线虫寿命模型,以雷帕霉素为阳性对照药,分别考察8种必需氨基酸对线虫生存时间的影响。再用筛选出的氨基酸处理线虫21d,通过秀丽隐杆线虫-绿脓杆菌感染模型,考察氨基酸对线虫的抗感染能力的影响,利用实时荧光定量Real-Time RT-PCR方法检测氨基酸处理线虫后DAF-16/FOXO下游基因和免疫相关基因的表达水平。结果表明8种必需氨基酸中苏氨酸和异亮氨酸既能延长野生型线虫的寿命又能延长daf-16突变型线虫的寿命,同时还能增强秀丽隐杆线虫抗绿脓杆菌感染的能力,并提高免疫相关基因lys-7、clec-67的表达水平,而DAF-16/FOXO下游基因表达没有明显变化。因此苏氨酸和异亮氨酸能延长线虫寿命、提高抗感染能力,且对线虫寿命的延长作用不完全依赖于DAF-16/FOXO转录因子。 相似文献
19.
秀丽隐杆线虫(Caenorhabditiselegans)是模式生物中的重要成员之一,因其实验成本低,实验周期短,非常适宜用于高校的遗传学实验教学中。线虫在实验教学中的使用,一方面可以有效地丰富高校实验教学的内容,另一方面也可以很好地激发学生的学习兴趣。本文介绍了线虫在遗传学实验教学中的应用实例,如生活周期观察、单因子杂交、单核苷酸多态性研究、RNA干扰(RNAi)实验等;对实验设置、操作要求、实验相关准备工作等进行了较为细致的描述,为线虫在高校遗传学实验教学中的应用提供了详实案例,可为线虫在高校遗传学实验或其他相关实验课程如细胞生物学实验、模式生物与发育生物学实验中的应用提供参考。 相似文献
20.
An important component of learned behaviour is the ability to forecast positive or negative outcomes based on specific sensory cues. Predictive capacity is typically manifested by appropriate behavioural patterning. However, the molecular mechanisms underlying behavioural plasticity are poorly understood. Caenorhabditis elegans displays experience‐dependent behavioural responses by associating distinct environmental signals. We find that ASIC‐1, a member of the degenerin/epithelial sodium channel family, which localizes at presynaptic terminals of dopaminergic neurons, is required for associative learning in C. elegans. ASIC‐1 functions in these neurons to amplify normal dopaminergic signalling, necessary for associative learning. Our results reveal a novel role of DEG/ENaC ion channels in neuronal communication by enhancing the activity of dopaminergic synapses. Similar mechanisms may facilitate synaptic plasticity in vertebrates. 相似文献