首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salicylic acid (SA) plays important roles in plants, most notably in the induction of systemic acquired resistance (SAR) against pathogens. A non-destructive in situ assay for SA would provide new insights into the functions of SA in SAR and other SA-regulated phenomena. We assessed a genetically engineered strain of Acinetobacter sp. ADP1, which proportionally produces bioluminescence in response to salicylates including SA and methylsalicylate, as a reporter for salicylate accumulation in the apoplast of plant leaves. SA was measured quantitatively in situ in NN genotype tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves inoculated with tobacco mosaic virus (TMV). The biosensor revealed accumulation of apoplastic SA before the visible appearance of hypersensitive response (HR) lesions. When the biosensor was infiltrated into TMV-inoculated leaves displaying HR lesions at 90 and 168 h post-inoculation, salicylate accumulation was detected predominantly in tissues surrounding the lesions and in veins adjacent to HR lesions. These images are consistent with previous data demonstrating that SA accumulation occurs prior to and following the onset of visible HR lesions. We also used the biosensor to observe apoplastic SA accumulation in tobacco leaves inoculated with virulent and HR-eliciting strains of the bacterial plant pathogen Pseudomonas syringae. The work demonstrates that the Acinetobacter sp. ADP1 biosensor is a useful new tool to non-destructively assay salicylates in situ and to map their spatial distribution in plant tissues.  相似文献   

2.
3.
With the number of functional genomic approaches in plant biology increasing daily, the demand for rapid and reliable RNA localization techniques for gene characterization is being felt. We present herein a novel, liquid phase in situ RT-PCR (IS-RT-PCR) protocol using a combination of gene-specific fluorescent primers and spectral confocal microscopy to localize target RNA in epicotyl sections and xylogenic suspension cultures of Zinnia elegans. Potential sources of artefacts from fixation to gene detection were systematically eliminated using both fluorescent primers and nucleotides for 18S rRNA gene detection, resulting in a set of optimal parameters for IS-RT-PCR that may be readily adapted to any target gene. By judiciously choosing fluorescent primers with non-overlapping fluorochromes, we have shown that our technique is readily adapted to multiplex IS-RT-PCR, enabling the simultaneous localization of more than one gene within a complex tissue or heterogeneous cell population. A 6-carboxy-2',4,4',5',7,7'-hexachlorofluorescein (6-HEX)-labelled primer and a tetrachloro-6-carboxy-fluorescein (TET)-labelled primer were designed for two marker genes associated with programmed cell death in tracheary elements (TEs): an endonuclease (Zen1) and a cysteine protease (ZcP4), respectively. An additional Cyan5 (Cy5)-labelled primer was used to monitor 18SrRNA expression. As expected, the 18S signal was constitutively expressed throughout epicotyls sections and living cells in xylogenic in vitro cultures, whereas Zen1 and ZcP4 were co-localized in forming TEs both in planta and in vitro. Analogous to clustering analysis of gene expression using microarrays to elucidate common metabolic pathways and developmental processes, this novel technique is perfectly adapted to gaining a better understanding of gene function via the coordinated expression of genes in specific cell types of complex tissues and cell populations.  相似文献   

4.
The hypothesis that physiologically activeconcentrations of salicylic acid (SA) and itsderivatives can confer stress tolerance in plants wasevaluated using bean (Phaseolus vulgaris L.) andtomato (Lycopersicon esculentum L.). Plantsgrown from seeds imbibed in aqueous solutions (0.1--0.5 mM) of salicylic acid or acetyl salicylic acid(ASA) displayed enhanced tolerance to heat, chillingand drought stresses. Seedlings acquired similarstress tolerance when SA or ASA treatments wereapplied as soil drenches. The fact that seedimbibition with SA or ASA confers stress tolerance inplants is more consistent with a signaling role ofthese molecules, leading to the expression oftolerance rather than a direct effect. Induction ofmultiple stress tolerance in plants by exogenousapplication of SA and its derivatives may have asignificant practical application in agriculture,horticulture and forestry.  相似文献   

5.
水杨酸对马铃薯试管微薯形成的影响研究   总被引:11,自引:1,他引:11  
研究了不同浓度水杨酸(SA)对马铃薯脱毒试管苗生长,分化及试管微薯诱导和发育的 浓度SA显著抑帛式管苗主茎和根的生长,促进侧枝和匍匐茎分化。高浓度(0.1-1.0mmol/L)SA能诱导试管微薯形成并显著提高结薯率。SA浓度为0.5mmol/L时,结薯率最高,且成薯集中,薯块大小整齐一致。  相似文献   

6.
以不同浓度水杨酸、不同浸果时间研究水杨酸对板栗果实冷藏效果的影响。结果表明:水杨酸可抑制贮藏期间栗果呼吸强度,推迟呼吸跃变的到来;还可抑制VC含量和淀粉含量;水杨酸处理后栗果腐烂率和质量损失率均降低。最佳处理方式为0.5 g/L水杨酸浸果10 m in。  相似文献   

7.
The effects of salicylic acid (SA) at three concentrations i.e. 2.5, 5 and 7 mM and plant extracts from pick tooth (Ammi visnaga), liquorice (Glycyrrhiza glabra), artemisia (Artemisia judaica), mint (Mentha viridis), clove (Syzygium aromaticum) and blue gum (Eucalyptus globulus) on the infection of rice kernel smut disease caused by Tilletia barclayana were studied. Spraying of rice plants with different concentrations of SA at seven days before infection was the most effective treatment against pathogen infection. Among all plant extract treatments, M. viridis and S. aromaticum were the most effective treatments. Additionally, our results showed increased levels of peroxidase, polyphenol oxidase, phenylalanine ammonia lyase and chitinase as well as total protein contents in the treated plants compared with the control. In conclusion, accumulations of these oxidative enzymes in plants treated with SA and plant extracts provide their role in the activation of induced resistance against T. barclayana.  相似文献   

8.
Plant activators are agrochemicals that protect plants from a broad range of pathogens by activating the plant immune system. Unlike pesticides, they do not target pathogens; therefore, plant activators provide durable effects that are not overcome by pathogenic microbes. Although certain plant activators have been applied to paddy fields for more than 30 years, the molecular basis of the underlying immune induction are unclear. From the screening of 10,000 diverse chemicals by a high-throughput screening procedure to identify compounds that specifically enhance pathogen-induced cell death in Arabidopsis cultured cells, we identified 7 compounds, which we designated as immune priming chemicals (Imprimatins). These compounds increased disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants. Pretreatments increased the accumulation of endogenous salicylic acid (SA) but reduced its metabolite, SA-O-β-D-glucoside (SAG). Imprimatins inhibited the enzymatic activities of 2 SA glucosyltransferases (SAGTs) in vitro at concentrations effective for immune priming. Single and double knockout Arabidopsis plants for both SAGTs consistently exhibited enhanced disease resistance and SA accumulation. Our results demonstrate that the control of the free SA pool through SA-inactivating enzymes can be a useful methodology to confer disease resistance in plants. SAGTs can pave the way for target-based discovery of novel crop protectants.  相似文献   

9.
The importance of phytohormone balance is increasingly recognized as central to the outcome of plant–pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana . We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.  相似文献   

10.
应用原位引物标记技术(PRINS)检测了21号染色体着丝粒,在外周血和绒毛细胞的标记效率分别为91%和93%,实验过程可以在2h之内完成,证明这一检测方法是一种快速、灵敏、特异性良好的染色体数目检测方法,有可能用于21号染色体数目异常的快速诊断。  相似文献   

11.
12.
水杨酸对盐胁迫下管花蒲公英的保护作用   总被引:10,自引:2,他引:10  
杨晓杰  张洪伟 《植物研究》2006,26(2):222-224
以管花蒲公英为材料,研究盐分胁迫对其的生理影响及水杨酸对盐胁迫条件下的管花蒲公英的保护作用。结果表明:水杨酸能够降低盐胁迫条件下相对电导率,提高体内过氧化物酶等细胞保护性酶的活性;提高可溶性糖和可溶性蛋白的含量,提高管花蒲公英对盐胁迫的抗逆性。  相似文献   

13.
Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.  相似文献   

14.
Among the regulatory mechanisms of systemic acquired resistance (SAR) in tomato, antagonistic interaction between salicylic acid (SA) and abscisic acid (ABA) signaling pathways was investigated. Treatment with 1,2-benzisothiazol-3(2H)-one1,1-dioxide (BIT) induced SAR in tomato thorough SA biosynthesis. Pretreatment of ABA suppressed BIT-induced SAR including SA accumulation, suggesting that ABA suppressed SAR by inhibiting SA biosynthesis.  相似文献   

15.
16.
水杨酸对低温胁迫香蕉幼苗呼吸作用的影响   总被引:1,自引:0,他引:1  
探讨了水杨酸 (salicylicacid ,SA)对低温胁迫香蕉幼苗叶片呼吸作用的影响。在常温下用 0 .5mmol/LSA水溶液处理香蕉幼苗 ,能明显提高香蕉幼苗的抗氰呼吸和细胞色素呼吸 ,增加总呼吸量 ,提高产热量 ;在随后 7℃低温胁迫与常温恢复期间SA预处理 ,能抑制总呼吸速率的下降 ,这种对总呼吸下降的抑制与此时细胞色素途径维持在较高的水平有关 ,而与抗氰呼吸无关。此时也未检测到SA预处理植株叶片产热量增加的现象  相似文献   

17.
18.
Three kinds of in situ ligands syntheses involving malic acid, i.e. hydration, intra-molecular dehydration and isomeric transformation, have been found during studying on the syntheses of compounds 1-5. According these results, it can be concluded that the nature of metal atom affects strongly the in situ ligand synthesis, vice versa; the in situ ligand synthesis is favorable to the formation of coordination compound.  相似文献   

19.
Genus-specific 16S rRNA targeted oligonucleotide probes, Rco1 and Rco2, were designed and used to detect rhodococci in activated sludge foam samples by confocal laser scanning microscopy. Pure cultures were used to find the optimal hybridisation conditions which were determined by comparing the mean fluorescent intensities of target and non-target cells from images captured using a confocal laser scanning microscope (CLSM). The combination of fluorescent in situ hybridisation with rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy provides an effective way of detecting rhodococci in environmental samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号