首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elin Boalt  Kari Lehtilä 《Oikos》2007,116(12):2071-2081
To study mechanisms underlying plant tolerance to herbivore damage, we used apical and foliar damage as experimental treatments to study whether there are similar tolerance mechanisms to different types of damage. We also studied whether tolerance to different types of damage are associated, and whether there is a cost involved in plant tolerance to different types of herbivore damage. Our greenhouse experiment involved 480 plants from 30 full-sib families of an annual weed Raphanus raphanistrum , wild radish, which were subjected to control and two different simulated herbivore damage treatments, apex removal and foliar damage of 30% of leaf area. Apical damage significantly decreased seed production, whereas foliar damage had no effect. There was a significant genetic variation for tolerance to foliar, but not apical damage. No costs were observed in terms of negative correlation between tolerance to either damage type and fitness of undamaged plants. Tolerances to apical and foliar damage were not significantly correlated with each other. We observed a larger number of significant associations between tolerance and reproductive traits than between tolerance and vegetative traits. Plant height and leaf size of damaged plants interacted in their association to tolerance to foliar damage. Inflorescence number and pollen quantity per flower of damaged plants were positively associated with tolerance to apical damage. In late-flowering genotypes, petal size of undamaged plants and pollen quantity of damaged plants were positively associated with tolerance to foliar damage. In summary, traits involved in floral display and male fitness were associated with plant tolerance to herbivore damage.  相似文献   

2.
Tolerance to competition has been hypothesized to reduce the negative impact of plant–plant competition on fitness. Although competitive interactions are a strong selective force, an analysis of net selection on tolerance to competition is absent in the literature. Using 55 full/half‐sibling families from 18 maternal lines in the crop weed Ipomoea purpurea, we measured fitness and putative tolerance traits when grown with and without competition in an agricultural field. We tested for the presence of genetic variation for tolerance to competition and determined if there were costs and benefits of this trait. We also assessed correlations between tolerance and potential tolerance traits. We uncovered a fitness benefit of tolerance in the presence of competition and a cost in its absence. We failed to detect evidence of additive genetic variation underlying tolerance, but did uncover the presence of a significant maternal‐line effect for tolerance, which suggests its evolutionary trajectory is not easily predicted. The cost of tolerance is likely due to later initiation of flowering of tolerant individuals in the absence of competition, whereas relative growth rate was found to positively covary with tolerance in the presence of competition, and can thus be considered a tolerance trait.  相似文献   

3.
Evolution of plant resistance and tolerance to frost damage   总被引:1,自引:0,他引:1  
Plant defence against any type of stress may involve resistance (traits that reduce damage) or tolerance (traits that reduce the negative fitness impacts of damage). These two strategies have been proposed as redundant evolutionary alternatives. A late‐season frost enabled us to estimate natural selection and genetic constraints on the evolution of frost resistance and tolerance in a wild plant species. We employed a genetic selection analysis (which is unbiased by environmental correlations between traits and fitness) on 75 paternal half‐sibling families of annual wild radish [Raphanus raphanistrum (Brassicaceae)]. In an experimental population in southern Ontario, we found strong selection favouring plant resistance to frost, but selection against tolerance to frost. The selection against tolerance may have been caused by a cost of tolerance, as we provide evidence for a negative genetic correlation between tolerance and fitness in the absence of frost damage. Although we found no evidence for the theoretically predicted trade‐off between frost tolerance and resistance among our families, we did detect negative correlational selection acting on the two traits, indicating that natural selection favoured high resistance combined with low tolerance and low resistance coupled with high tolerance, but not high or low levels of both traits together. There were few genetic correlations between the measured traits overall, but frost tolerance was negatively correlated with initial seed mass, and frost resistance was positively correlated with resistance to insect herbivory. Periodic episodes of strong selection such as that caused by the late‐season frost may be disproportionately important in evolution, and are likely becoming more common because of human alterations of the environment.  相似文献   

4.
Tolerance to grazing is a plant trait that can be adaptive in systems where plants are subjected to a diversity of herbivore attack types. To test the tolerance ability of the clonal sedge Carex bigelowii, which is food plant to several herbivores in alpine and arctic areas, and the potential fitness costs of this tolerance, replicated units of genets were subjected to three levels of damage throughout three consecutive seasons. The three levels of treatment were no damage, light damage and heavy damage, and the damage was conducted by tearing off all plant material at 3 and 0 cm above-ground respectively. The genets had no tolerance under damage in terms of sexual reproduction. In terms of clonal reproduction the genets showed tolerance under light damage but not under heavy damage. However, no fitness cost was found for this tolerance ability, i.e. genets had higher reproduction and growth under no damage. The average ramet weight had a similar decrease under both a low and high damage treatment. Changed partitioning of biomass between plant parts and reduced concentration of total non-structural carbohydrates (TNC) in storage organs are possible mechanisms for the ability to uphold clonal reproduction in response to damage. There were no significant indications that tolerance ability or its fitness cost differed between genets. Our results suggest that when subjected to heavy damage genets will only reproduce vegetatively. Consequently, it seems C. bigelowii has evolved to allocate resources to the survival of an already successful genet rather than to a potential new genet of unknown success.  相似文献   

5.
The evolutionary response of plant populations to selection for increased defense may be constrained by costs of defense. The purpose of this study was to investigate such constraints on the evolution of defense due to a cost of defense manifested as a trade-off between defense and tolerance. Variation in the response to artificial damage (tolerance) among lines of Brassica rapa that had been artificially selected for foliar glucosinolate content (defense) was examined. Leaf area was removed from replicates of three selection lines (high glucosinolates, control, and low glucosinolates) at three damage levels (0%, 20%, and 60% damage). An external cost of defense would result in a statistically significant selection line by damage treatment interaction, with those selected for high defense expressing less tolerance than those selected for low defense. Damage treatment had a significant overall effect on estimated total fitness, with fitness declining with increasing damage level. Further, selection line also had a significant overall effect on estimated total fitness, with low-defense selection lines having higher fitness compared to both control and high-defense selection lines. More importantly, a cost of defense in terms of tolerance was demonstrated by a significant selection line-by-damage treatment interaction. This interaction was in the direction to demonstrate a genetic trade-off between defense and tolerance, with low-defense selection lines decreasing estimated total fitness in response to damage less than both control and high-defense selection lines. Variation in tolerance among selection lines was due to the greater ability of low-defense lines to maintain fruit and seed production despite the presence of damage. In terms of tolerance, this cost of glucosinolate production in B. rapa could constrain the evolution of increased defense and, in so doing, maintain individuals within the population that are poorly defended yet tolerant.  相似文献   

6.
Defense costs provide a major explanation for why plants in nature have not evolved to be better defended against pathogens and herbivores; however, evidence for defense costs is often lacking. Plants defend by deploying resistance traits that reduce damage, and tolerance traits that reduce the fitness effects of damage. We first tested the defense-stress cost (DSC) hypothesis that costs of defenses increase and become important under competitive stress. In a greenhouse experiment, uniparental maternal families of the host plant Arabis perennans were grown in the presence and absence of the bunch grass Bouteloua gracilis and the herbivore Plutella xylostella. Costs of resistance and tolerance manifest as reduced growth in the absence of herbivory were significant when A. perennans grew alone, but not in the competitive environment, in contrast to the DSC hypothesis. We then tested the defense-stress benefit (DSB) hypothesis that plant defenses may benefit plants in competitive situations thereby reducing net costs. For example, chemical resistance agents and tolerance may also have functions in competitive interactions. To test the DSB hypothesis, we compared differentially competitive populations for defense costs, assuming that poorer competitors from less dense habitats were less likely to have evolved defenses that also function in competition. Without competitive benefits of defenses, poorer competitors were expected to have higher net costs of defenses under competition in accordance with DSB. Populations of A. perennans and A. drummondii that differed dramatically in competitiveness were compared for costs, and as the DSB hypothesis predicts, only the poor competitor population showed costs of resistance under competition. However, cost of tolerance under competition did not differ among populations, suggesting that the poor competitors might have evolved a general stress tolerance. Although the DSC hypothesis may explain cases where defense costs increase under stress, the DSB hypothesis may explain some cases where costs decrease under competitive stress.  相似文献   

7.
Theory predicts that plant defensive traits are costly due to trade-offs between allocation to defense and growth and reproduction. Most previous studies of costs of plant defense focused on female fitness costs of constitutively expressed defenses. Consideration of alternative plant strategies, such as induced defenses and tolerance to herbivory, and multiple types of costs, including allocation to male reproductive function, may increase our ability to detect costs of plant defense against herbivores. In this study we measured male and female reproductive costs associated with induced responses and tolerance to herbivory in annual wild radish plants (Raphanus raphanistrum). We induced resistance in the plants by subjecting them to herbivory by Pieris rapae caterpillars. We also induced resistance in plants without leaf tissue removal using a natural chemical elicitor, jasmonic acid; in addition, we removed leaf tissue without inducing plant responses using manual clipping. Induced responses included increased concentrations of indole glucosinolates, which are putative defense compounds. Induced responses, in the absence of leaf tissue removal, reduced plant fitness when five fitness components were considered together; costs of induction were individually detected for time to first flower and number of pollen grains produced per flower. In this system, induced responses appear to impose a cost, although this cost may not have been detected had we only quantified the traditionally measured fitness components, growth and seed production. In the absence of induced responses, 50% leaf tissue removal, reduced plant fitness in three out of the five fitness components measured. Induced responses to herbivory and leaf tissue removal had additive effects on plant fitness. Although plant sibships varied greatly (49–136%) in their level of tolerance to herbivory, costs of tolerance were not detected, as we did not find a negative association between the ability to compensate for damage and plant fitness in the absence of damage. We suggest that consideration of alternative plant defense strategies and multiple costs will result in a broader understanding of the evolutionary ecology of plant defense.  相似文献   

8.
Tolerance to herbivory (the degree to which plants maintain fitness after damage) is a key component of plant defense, so understanding how natural selection and evolutionary constraints act on tolerance traits is important to general theories of plant–herbivore interactions. These factors may be affected by plant competition, which often interacts with damage to influence trait expression and fitness. However, few studies have manipulated competitor density to examine the evolutionary effects of competition on tolerance. In this study, we tested whether intraspecific competition affects four aspects of the evolution of tolerance to herbivory in the perennial plant Solanum carolinense: phenotypic expression, expression of genetic variation, the adaptive value of tolerance, and costs of tolerance. We manipulated insect damage and intraspecific competition for clonal lines of S. carolinense in a greenhouse experiment, and measured tolerance in terms of sexual and asexual fitness components. Compared to plants growing at low density, plants growing at high density had greater expression of and genetic variation in tolerance, and experienced greater fitness benefits from tolerance when damaged. Tolerance was not costly for plants growing at either density, and only plants growing at low density benefited from tolerance when undamaged, perhaps due to greater intrinsic growth rates of more tolerant genotypes. These results suggest that competition is likely to facilitate the evolution of tolerance in S. carolinense, and perhaps in other plants that regularly experience competition, while spatio-temporal variation in density may maintain genetic variation in tolerance.  相似文献   

9.
The activation of dormant meristems following apical damage is an important mechanism for tolerance of herbivore damage, but its impact could vary with resource availability. Here, we examined central predictions of the limiting resource model (LRM), according to which high resource availability can support damage tolerance in plants with deterministic apical dominance, but will have limited or no effect in plants that are induced to increase branching by increased resource availability regardless of damage. We examined these predictions by studying the branching patterns of Medicago truncatula plants in response to both light and water availabilities and their effects on tolerance of apical damage. We used plants from environments that were predicted to select for different levels of apical dominance. Intact plants from the more productive and competitive population exhibited strong apical dominance and refrained from branching even under full light, whereas plants from the less productive and sparser population exhibited greater plasticity in apical dominance and readily branched under high water and light. In accordance with the LRM, these differences translated into differential responsiveness to apical damage: given abundant water, apical damage induced the activation of lateral meristems and increased pod and seed production in plants from the more productive environment, but not in plants from the less productive environment. These results suggest an adaptive association between deterministic inhibition of lateral meristems and compensatory ability, which supports the hypothesis that greater compensatory responsiveness to apical damage could be a derivative of adaptation to other environmental stresses, such as light competition.  相似文献   

10.
Although the evolution of plant response to herbivory can involve either resistance (a decrease in susceptibility to herbivore damage) or tolerance (a decrease in the per unit effect of herbivory on plant fitness), until recently few studies have explicitly incorporated both of these characters. Moreover, theory suggests these characters do not evolve independently, and also that the pattern of natural selection acting on resistance and tolerance depends on their costs and benefits. In a genotypic selection analysis on an experimental population of Brassica rapa (Brassicaceae) I found a complex set of correlational selection gradients acting on resistance and tolerance of damage by flea beetles (Phyllotreta cruciferae: Chrysomelidae) and weevils (Ceutorhynchus assimilis: Curculionidae), as well as directional and stabilizing selection on resistance to attack by weevils. Evolution of response to flea beetle attack is constrained by a strong allocation cost of tolerance, and this allocation cost may be caused by a complex correlation among weevil resistance, weevil tolerance, flea beetle resistance, and flea beetle tolerance. Thus, one important conclusion of this study is that ecological costs may involve complex correlations among multiple characters, and for this reason these costs may not be detectable by simple pairwise correlations between characters. The evolution of response to weevil attack is probably constrained by a series of correlations between weevil resistance, weevil tolerance, and fitness in the absence of weevil damage, and possibly by a cost of tolerance of weevil damage. However, the nature of these constraints is complicated by apparent overcompensation for weevil damage. Because damage by both flea beetles and weevils had non-linear effects on plant fitness, standard measures of tolerance were not appropriate. Thus, a second important contribution of this study is the use of the area under the curve defined by the regression of fitness on damage and damage-squared as a measure of tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Arjen Biere 《Plant and Soil》1996,182(2):313-327
Plant species from unproductive or adverse habitats are often characterized by a low potential relative growth rate (RGR). Although it is generally assumed that this is the result of selection for specific trait combinations that are associated with a low rate of net biomass accumulation, few studies have directly investigated the selective (dis-)advantage of specific growth parameters under a set of different environmental conditions. Aim of the present study was to quantify the impact of inherent differences in growth parameters among phenotypes of a single plant species, Lychnis flos-cuculi, on their performance under different soil nutrient conditions. Growth analysis revealed significant variation in RGR among progeny families from a diallel cross between eight genotypes originating from a single population. Differences in RGR were due to variation in both leaf area ratio (LAR) and in net assimilation rate (NAR). A genetic trade-off was observed between these two components of growth, i.e. progeny families with high investment in leaf area had a lower rate of net biomass accumulation per unit leaf area. The degree of plasticity in RGR to nutrient conditions did not differ among progeny families. Inherent differences in growth parameters among progeny families had a significant impact on their yield in competition with Anthoxanthum odoratum and Taraxacum hollandicum. In nutrient-rich conditions, progeny families with an inherently high leaf weight ratio (LWR) achieved higher yield in competition, but variation in this trait could not explain differences in competitive yield under nutrient-poor conditions. Inherent differences in growth parameters among progeny families were poorly correlated with differences in survival and average rosette biomass (a good predictor of fecundity) among these progeny families sown in four field sites along a natural gradient of soil fertility. In the more productive sites none of the growth parameters was significantly correlated with rosette biomass, but in the least productive site progeny families with an inherently high specific leaf area (SLA) tended to produce smaller rosettes than low-SLA families. These results are consistent with the view that a selective advantage may accrue from either high or low values of individual RGR components, depending on habitat conditions, and that the selective advantage of low trait values in nutrient-poor environments may results in indirect selection for low RGR in these habitats.  相似文献   

12.
Plant resistance and tolerance to herbivores, parasites, pathogens, and abiotic factors may involve two types of costs. First, resistance and tolerance may be costly in terms of plant fitness. Second, resistance and tolerance to multiple enemies may involve ecological trade-offs. Our study species, the stinging nettle ( Urtica dioica L.) has significant variation among seed families in resistance and tolerance as well as costs of resistance and tolerance to the holoparasitic plant Cuscuta europaea L. Here we report on variation among seed families (i.e. genetic) in tolerance to nutrient limitation and in resistance to both mammalian herbivores (i.e. number of stinging trichomes) and an invertebrate herbivore (i.e. inverse of the performance of a generalist snail, Arianta arbustorum). Our results indicate direct fitness costs of snail resistance in terms of host reproduction whereas we did not detect fitness costs of mammalian resistance or tolerance to nutrient limitation. We further tested for ecological trade-offs among tolerance or resistance to the parasitic plant, herbivore resistance, and tolerance to nutrient limitation in the stinging nettle. Tolerance of nettles to nutrient limitation and resistance to mammalian herbivores tended to correlate negatively. However, there were no significant correlations among resistance and tolerance to the different natural enemies (i.e. parasitic plants, snails, and mammals). The results of this greenhouse study thus suggest that resistance and tolerance of nettles to diverse enemies are free to evolve independently of each other but not completely without direct costs in terms of plant fitness.  相似文献   

13.
The study of latitudinal gradients can yield important insights into adaptation to temperature stress. Two strategies are available: resistance by limiting damage, or tolerance by reducing the fitness consequences of damage. Here we studied latitudinal variation in resistance and tolerance to frost and heat and tested the prediction of a trade-off between the two strategies and their costliness. We raised plants of replicate maternal seed families from eight populations of North American Arabidopsis lyrata collected along a latitudinal gradient in climate chambers and exposed them repeatedly to either frost or heat stress, while a set of control plants grew under standard conditions. When control plants reached maximum rosette size, leaf samples were exposed to frost and heat stress, and electrolyte leakage (PEL) was measured and treated as an estimate of resistance. Difference in maximum rosette size between stressed and control plants was used as an estimate of tolerance. Northern populations were more frost resistant, and less heat resistant and less heat tolerant, but—unexpectedly—they were also less frost tolerant. Negative genetic correlations between resistance and tolerance to the same and different thermal stress were generally not significant, indicating only weak trade-offs. However, tolerance to frost was consistently accompanied by small size under control conditions, which may explain the non-adaptive latitudinal pattern for frost tolerance. Our results suggest that adaptation to frost and heat is not constrained by trade-offs between them. But the cost of frost tolerance in terms of plant size reduction may be important for the limits of species distributions and climate niches.  相似文献   

14.
The ability of plants to recover from herbivore damage and maintain their fitness depends on physiological mechanisms that are affected by the availability of resources such as carbon and soil nutrients. In this study, we explored the effects of increased carbon and nutrient availability on the response of rapid cycling Brassica rapa to damage by the generalist herbivore, Trichoplusia ni (Noctuidae), in a greenhouse experiment. Using fruit mass as an estimate of plant fitness, we tested three physiological models, which predict either an increase or a decrease of tolerance to herbivory with increasing resource availability. We used leaf demography to examine some plausible mechanisms through which resource availability may affect tolerance. Our results contradict all models, and, rather, they support a more complicated view of the plasticity of resource uptake and allocation than the ones considered by the models tested. Fruit mass was negatively affected by herbivore damage only under elevated CO2, and only for certain harvest dates. Increased CO2 had no effect on the number of leaf births, but it decreased leaf longevity and the total number of leaves on a plant. Nutrient addition increased the number of leaf births, leaf longevity and the total number of leaves on a plant. We conclude that a shortening of the life span of the plants, brought about by elevated CO2, was responsible for a higher susceptibility of plants to herbivore damage under high CO2 concentration.  相似文献   

15.
Hunt-Joshi TR  Blossey B 《Oecologia》2005,142(4):554-563
Interspecific interactions of herbivores sharing a host plant may be important in structuring herbivore communities. We investigated host plant-mediated interactions of root (Hylobius transversovittatus) and leaf herbivores (Galerucella calmariensis), released to control purple loosestrife (Lythrum salicaria) in North America, in field and potted plant experiments. In the potted plant experiments, leaf herbivory by G. calmariensis reduced H. transversovittatus larval survival (but not larval development) but did not affect oviposition preference. Root herbivory by H. transversovittatus did not affect either G. calmariensis fitness or oviposition preference. In field cage experiments, we found no evidence of interspecific competition between root and leaf herbivores over a 4-year period. Our data suggest that large populations of leaf beetles can negatively affect root-feeding larvae when high intensity of leaf damage results in partial or complete death of belowground tissue. Such events may be rare occurrences (or affected by experimental venue) since field data differed from data obtained from potted plant experiments, particularly at high leaf beetle densities. Interspecific interactions between G. calmariensis and H. transversovittatus are possible and may negatively affect either species, but this is unlikely to occur unless heavy feeding damage results in partial or complete plant death.  相似文献   

16.
Tolerance to herbivory minimizes the effects of herbivory on plant fitness. In the presence of herbivores, maximal levels of tolerance may be expected to evolve. In many plant species, however, tolerance is found at an intermediate level. Tolerance may be prevented from evolving to a maximal level by genetic constraints or stabilizing selection. We report on a field study of Ipomoea purpurea, the common morning glory, in which we measured three types of costs that may be associated with tolerance and the pattern of selection acting on tolerance to two types of herbivore damage: apical meristem damage and folivory. We used genetic correlations to test for the presence of three types of costs: a trade-off between tolerance and fitness in the absence of herbivore damage, a trade-off between tolerance and resistance, and genetic covariances among tolerance to different types of damage. We found no evidence that tolerance to apical meristem damage or tolerance to folivory was correlated with resistance, although these two types of tolerance were positively correlated with one another. Tolerance to both types of damage involved costs of lower fitness in the absence of herbivory. Selection acting on tolerance to either type of herbivory was not detected at natural levels of herbivory. Selection is expected to act against tolerance at reduced levels of herbivory and favor tolerance at elevated levels of herbivory. In addition, significant correlational selection gradients indicate that the pattern of selection acting on tolerance depends on values of resistance. Although we found no evidence for stabilizing selection, fluctuating selection resulting from fluctuating herbivore loads may be responsible for maintaining tolerance at an intermediate level.  相似文献   

17.
The objective of this study was to compare the growth and short-term (single season) competitive performance of three species of Polygonum known to differ in flooding tolerance and life history. Polygonum amphibium is a perennial with low sexual reproductive effort and a relatively high degree of flooding tolerance, P. lapathifolium is an annual species with a high sexual reproductive effort and a low tolerance to flooding, and P. hydropiperoides is intermediate to the other two in terms of sexual reproductive effort and flooding tolerance. In order to determine the relative growth and competitive abilities of these species, mixtures and monocultures of plants were grown in pots and maintained under three flooding regimes: 1) flooded, 2) partially drained, and 3) well drained. Both P. hydropiperoides and P. amphibium grew best under flooded and partially drained conditions with reduced growth in the drained treatment. Polygonum lapathifolium, in contrast, grew as well in the drained treatment as in the more flooded treatments. Results from competition experiments were consistent in showing the relative competitive abilities to be P. lapathifolium > P. hydropiperoides > P. amphibium regardless of flooding regime. Thus, short-term competitive performance was found to trade off with flood tolerance rather than with sexual reproductive effort.  相似文献   

18.
Resource availability may limit plant tolerance of herbivory. To predict the effect of differential resource availability on plant tolerance, the limiting resource model (LRM) considers which resource limits plant fitness and which resource is mostly affected by herbivore damage. We tested the effect of experimental drought on tolerance of leaf damage in Ipomoea purpurea, which is naturally exposed to both leaf damage and summer drought. To seek mechanistic explanations, we also measured several morphological, allocation and gas exchange traits. In this case, LRM predicts that tolerance would be the same in both water treatments. Plants were assigned to a combination of two water treatments (control and low water) and two damage treatments (50% defoliation and undamaged). Plants showed tolerance of leaf damage, i.e., a similar number of fruits were produced by damaged and undamaged plants, only in control water. Whereas experimental drought affected all plant traits, leaf damage caused plants to show a greater leaf trichome density and reduced shoot biomass, but only in low water. It is suggested that the reduced fitness (number of fruits) of damaged plants in low water was mediated by the differential reduction of shoot biomass, because the number of fruits per shoot biomass was similar in damaged and undamaged plants. Alternative but less likely explanations include the opposing direction of functional responses to drought and defoliation, and resource costs of the damage-induced leaf trichome density. Our results somewhat challenge the LRM predictions, but further research including field experiments is needed to validate some of the preliminary conclusions drawn.  相似文献   

19.
Evolutionary biologists explain the maintenance of intermediate levels of defense in plant populations as being due to trade-offs, or negative genetic covariances among ecologically important traits. Attempts at detecting trade-offs as constraints on the evolution of defense have not always been successful, leading some to conclude that such trade-offs rarely explain current levels of defense in the population. Using the agricultural pest Ipomoea purpurea, we measured correlations between traits involved in defense to glyphosate, the active ingredient in Roundup, a widely used herbicide. We found significant allocation costs of tolerance, as well as trade-offs between resistance and two measures of tolerance to glyphosate. Selection on resistance and tolerance exhibited differing patterns: tolerance to leaf damage was under negative directional selection, whereas resistance was under positive directional selection. The joint pattern of selection on resistance and tolerance to leaf damage indicated the presence of alternate peaks in the fitness landscape such that a combination of either high tolerance and low resistance, or high resistance and low tolerance was favored. The widespread use of this herbicide suggests that it is likely an important selective agent on weed populations. Understanding the evolutionary dynamics of herbicide defense traits is thus of increasing importance in the context of human-mediated evolution.  相似文献   

20.
Population density and costs of parasite infection may condition the capacity of organisms to grow, survive and reproduce, i.e. their competitive ability. In host–parasite systems there are different competitive interactions: among uninfected hosts, among infected hosts, and between uninfected and infected hosts. Consequently, parasite infection results in a direct cost, due to parasitism itself, and in an indirect cost, due to modification of the competitive ability of the infected host. Theory predicts that host fitness reduction will be higher under the combined effects of costs of parasitism and competition than under each factor separately. However, experimental support for this prediction is scarce, and derives mostly from animal–parasite systems. We have analysed the interaction between parasite infection and plant density using the plant-parasite system of Arabidopsis thaliana and the generalist virus Cucumber mosaic virus (CMV). Plants of three wild genotypes grown at different densities were infected by CMV at various prevalences, and the effects of infection on plant growth and reproduction were quantified. Results demonstrate that the combined effects of host density and parasite infection may result either in a reduction or in an increase of the competitive ability of the host. The two genotypes investing a higher proportion of resources to reproduction showed tolerance to the direct cost of infection, while the genotype investing a higher proportion of resources to growth showed tolerance to the indirect cost of infection. Our findings show that the outcome of the interaction between host density and parasitism depends on the host genotype, which determines the plasticity of life-history traits and consequently, the host capacity to develop different tolerance mechanisms to the direct or indirect costs of parasitism. These results indicate the high relevance of host density and parasitism in determining the competitive ability of a plant, and stress the need to simultaneously consider both factors to understand the selective pressures that drive host–parasite co-evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号