首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Flavones such as morin, rutin, quercitrin, quercetin and wogonin were found to be able to strongly enhance the electrochemiluminescence (ECL) of the Ru(bpy)32+ system. Based on this, a novel ECL method with good stability and reproducibility could be developed for determination of flavones. Under the optimum conditions, the enhanced ECL intensity was linear with the flavones concentration in a wide range. The detection limits (defined as S:N = 3) for morin, rutin, quercitrin, quercetin and wogonin were 3.2 × 10–7 mol/L, 4.3 × 10–7, 1.8 × 10–7, 8.0 × 10–8 and 1.0 × 10–7 mol/L, respectively. In addition, the possible mechanism for the Ru(bpy)32+ ECL system in the presence of flavones is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
An electrochemiluminescence (ECL) approach for methamphetamine determination was developed based on a glassy carbon electrode modified with a Ru(bpy)32+‐doped silica nanoparticles/Nafion composite film. The monodispersed nanoparticles, which were about 50 nm in size, were synthesized using the water‐in‐oil microemulsion method. The ECL results revealed that Ru(bpy)32+ doped in silica nanoparticles retained its original photo‐ and electrochemical properties. The ECL intensity was found to be proportional to methamphetamine concentration over the range from 1.0 × 10?7 to 1.0 × 10?5 mol L?1, and the detection limit was found to be 2.6 × 10?8 mol L?1. The proposed ECL approach was used to analyze the methamphetamine content in drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Quenching effects of bergenin, based on the electrochemiluminescence (ECL) of the tris(2,2′‐bipyridyl)‐ruthenium(II) (Ru(bpy)32+)/tri‐n‐propylamine (TPrA) system in aqueous solution, is been described. The quenching behavior can be observed with a 100‐fold excess of bergenin over Ru(bpy)32+. In the presence of 0.1 m TPrA, the Stern–Volmer constant (KSV) of the ECL quenching is as high as 1.16 × 104 M?1 for bergenin. The logarithmic plot of the inhibited ECL versus logarithmic plot of the concentration of bergenin was linear over the range 3.0 × 10?6–1.0 × 10?4 mol/L. The corresponding limit of detection was 6.0 × 10?7 mol/L for bergenin (S/N = 3). In the mechanism of quenching it is believed that the competition of the active free radicals between Ru(bpy)32+/TPrA and bergenin was the key factor for the ECL inhibition of the system. Photoluminescence, cyclic voltammetry, coupled with bulk electrolysis, supports the supposition mechanism of the Ru(bpy)32+/TPrA–bergenin system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A tris(2,2‐bipyridyl)ruthenium(II) (Ru(bpy)32+)‐based electrochemiluminescence (ECL) detection coupled with capillary electrophoresis (CE) method has been established for the sensitive determination of ephedrine for the first time. Under the optimized conditions [ECL detection at 1.15 V, 25 mmol/L phosphate buffer solution (PBS), pH 8.0, as running buffer, separation voltage 12.5 kV, 5 mmol/L Ru(bpy)32+ with 60 mmol/L PBS, pH 8.5, in the detection cell] linear correlation (r = 0.9987) between ECL intensity and ephedrine concentration was obtained in the range 6.0 × 10–8–6.0 × 10–6 g/mL. The detection limit was 4.5 × 10–9 g/mL (S:N = 3). The developed method was successfully applied to the analysis of ephedrine in human urine and the investigation of its interactions with three proteins, including bovine serum albumin (BSA), cytochrome C (Cyt‐C) and myoglobin (Mb). The number of binding sites and the binding constants between ephedrine and BSA, Cyt‐C and Mb were 8.52, 12.60, 10.66 and 1.55 × 104 mol/L, 6.58 × 103 mol/L and 1.59 × 104 mol/L, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This study describes the quenching effects of p‐aminobenzenesulfonic acid (p‐ABSA) based on electrochemiluminescence (ECL) of the tris (2,2‐bipyridyl)‐ruthenium(II)(Ru(bpy)32+)/tri‐n‐propylamine (TPrA) system in aqueous solution. Quenching behaviours were observed with a 200‐fold excess of p‐ABSA over Ru(bpy)32+. In the presence of 0.1 M TPrA, the Stern‐Volmer constant (KSV) of ECL quenching was as high as 1.39 × 104 M‐1 for p‐ABSA. The logarithmic plot of inhibited ECL versus concentration of p‐ABSA was linear over the range of 6.0 × 10‐6 ‐3.0 × 10‐4 mol/L. The corresponding limit of detection was 1.2 × 10‐6 mol/L for p‐ABSA (S/N = 3). The mechanism of quenching is believed to involve an energy transfer from the excited‐state luminophore to a dimer of p‐ABSA and the adsorption of free radicals of p‐ABSA at the electrode surface that impeded the oxidation of the Ru(bpy)32+/TPrA system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid, sensitive and simple electrochemiluminescence method for the determination of 5‐hydroxytryptamine (5‐HT) using capillary electrophoresis was proposed. The experimental parameters, including the detection potential, the concentration of Ru(bpy)32+, the concentration and pH of phosphate buffer for separation and detection, the injection voltage and time and the separation voltage on the determination of 5‐HT, were optimized. Under the optimized conditions, the linear concentration range for 5‐HT was 3.5 × 10‐9–5.1 × 10‐3 mol/L, with a detection limit of 5 × 10‐10 mol/L. The relative standard deviations (RSDs) of the ECL intensity and the migration times for six continuous injections of 1.0 µmol/L 5‐HT were 2.48% and 1.3%, respectively. The method was successfully applied to 5‐HT assay in samples of human serum in 5 min and the extraction recoveries with spiked serum samples were over 94.4%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Based on the strong enhancement effect of procaterol hydrochloride on the electrochemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′‐bipyridine) in an alkaline H3PO4–NaOH buffer solution on a bare Pt electrode, a simple, rapid and sensitive method was developed for the determination of procaterol hydrochloride. The optimum conditions for the enhanced ECL have been developed in detail in this work. Under optimum conditions, the logarithmic ECL enhancement vs. the logarithmic concentration of procaterol hydrochloride is linear over a wide concentration range of 2.0 × 10?7 to 2.0 × 10?4 M (r =  0.9976), with a limit of detection of 1.1 × 10?8 M (S/N =  3), and a relative standard deviation of 2.1% (n =  7, c =  5.0 × 10?6 M). The proposed method was applied to the determination of this drug in tablets with recoveries of 89.7%–98.5%. In addition, a possible mechanism for the enhanced ECL of Ru(bpy)32+, which is caused by ProH, has also been proposed.  相似文献   

8.
In this study, electrochemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′‐bipyridyl) using ascorbic acid (H2A) as co‐reactant was investigated in an aqueous solution. When H2A was co‐existent in a Ru(bpy)32+‐containing buffer solution, ECL peaks were observed at a potential corresponding to the oxidation of Ru(bpy)32+, and the intensity was proportional to H2A concentration at lower concentration levels. The formation of the excited state *Ru(bpy)32+ was confirmed to result from the co‐reaction between Ru(bpy)33+and the intermediate of ascorbate anion radical (A•), which showed the maximum ECL at pH = 8.8. It is our first finding that the ECL intensity would be quenched significantly when the concentration of H2A was relatively higher, or upon ultrasonic irradiation. In most instances, quenching is observed with four‐fold excess of H2A over Ru(bpy)32+. The diffusional self‐quenching scheme as well as the possible reaction pathways involved in the Ru(bpy)32+–H2A ECL system are discussed in this study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This paper reports a flow‐injection chemiluminescence method for the determination of ofloxacin (OFLX) using the Ru(bpy)2(CIP)2+–Ce(IV) system. Under the optimum conditions, the relative CL intensity was proportional to the concentration of OFLX in the range 3.0 × 10–8–1.0 × 10–5 mol/L and the detection limit was 4.2 × 10–9 mol/L. The proposed method has been successfully applied to the determination of ofloxacin in pharmaceuticals and human urine. The chemiluminescence mechanism of the system is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive capillary electrophoresis–electrochemiluminescence (CE–ECL) assay with an ionic liquid (IL) was developed for the determination of arecoline in areca nut. The IL, 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMImBF4), was an effective additive improved not only the separation selectivity but also the detection sensitivity of the analyte. BMImBF4 in the separation electrolyte made the resistance of the separation buffer much lower than that of the sample solution, which resulted in an enhanced field amplified electrokinetic injection CE. ECL intensity of arecoline is about two times higher than that of the analyte with phosphate–IL buffer system. Resolution between arecoline and other unknown compounds in real samples was improved. Under the optimized conditions (ECL detection at 1.2 V, 16 kV separation voltage, 20 mmol/L phosphate with 10 mmol/L BMImBF4 buffer at pH 7.50, 5 mmol/L Ru(bpy)32+ and 50 mmol/L phosphate buffer in the detection reservoir), a detection limit of 5 × 10–9 mol/L for arecoline was obtained. Relative standard deviations of the ECL intensity and the migration time were 4.51% and 0.72% for arecoline. This method was successfully applied to determination of the amount of arecoline in areca nut within 450 s. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A simple and sensitive electrochemiluminescence (ECL) method for the determination of etamsylate has been developed by coupling an electrochemical flow‐through cell with a tris(2,2'‐bipyridyl)ruthenium(II) (Ru(bpy)32+)–Nafion‐modified carbon electrode. It is based on the oxidized Ru(bpy)32+ on the electrode surface reacting with etamsylate and producing an excellent ECL signal. Under optimized experimental conditions, the proposed method allows the measurement of etamsylate over the range of 8–1000 ng/mL with a correlation coefficient of r = 0.9997 (n = 7) and a limit of detection of 1.57 ng/mL (3σ), the relative standard deviation (RSD) for 1000 ng/mL etamsylate (n = 7) is 0.96%. The immobilized Ru(bpy)32+ carbon paste electrode shows good electrochemical and photochemical stability. This method is rapid, simple, sensitive and has good reproducibility. It has been successfully applied to the determination of the studied etamsylate in pharmaceutical preparations with satisfactory results. The possible ECL reaction mechanism has also been discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A two‐channel flow‐injection (FI) method is reported for the determination of iodide and iodine by its enhancement effect on the Ru(bpy)33+–NADH chemiluminescence (CL) system. The limit of detection (3 s of blank) was 1.0 × 10–9 mol/L iodide/iodine, with a sample throughput of 60/h. The calibration graphs over the range 1.0–50 × 10–8 mol/L gave correlation coefficients of 0.9994 and 0.999 (n = 5) with relative standard deviations (RSD; n = 4) of 1.0–2.5%, respectively. The effects of interfering cations, anions and some organic compounds were also studied. The method was applied to iodized salts and pharmaceutical samples and the results obtained were in good agreement with the value quoted. The CL method developed was compared with spectrophotometric method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A novel method was developed for the determination of levamisole by electrochemiluminescence. The method was based on electrochemiluminescence signal enhancement produced by Ru(bpy)32+, which reacted with the tertiary amine group of levamisole on a platinum electrode in 12 mmol/L borate buffer (pH 9). A linear relationship between the luminous intensity and concentration of levamisole in the range 0–1 × 10–7 mol/L was obtained and the detection limit was 1.76 × 10–11 mol/L. The method is sensitive, selective, simple and convenient. The method has been successfully applied to the analysis of levamisole in serum. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The electrochemiluminescence (ECL) of tris(2,2‐bipyridyl)ruthenium [Ru(bpy)3]2+ has received much attention. By immobilizing [Ru(bpy)3]2+ on an electrode surface, solid‐state ECL has several advantages over solution‐phase ECL, such as reduced amounts of costly reagent and a simplified experimental design. Herein, different types of solid‐state ECL sensors were fabricated and the performances of paraffin oil and two ionic liquids (ILs) as the binders were compared for the construction of solid‐state ECL. Scanning electron microscopy (SEM), CCD camera, UV–vis, fluorescence spectroscopy, electrochemistry and ECL were applied to characterize and evaluate the performance of the solid‐state composites. According to the obtained results, Ru–graphite/IL octyl pyridinium hexaflurophosphate (OPPF6) was introduced as a new solid‐state ECL with excellent properties such as simple preparation, low background current, fast electron‐transfer rate and good reproducibility and stability. Moreover, for a study of the effect of carbon structure on the performance of the electrode, graphite was replaced by multi‐walled carbon nanotubes (MWCNTs) and Ru–MWCNT/OPPF6 was constructed and its efficiency was compared with Ru–graphite/OPPF6 composite electrode. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
On the basis of an europium (III)‐doped Prussian blue analog film modifying platinum electrode as the working electrode, a Ru(bpy)32+‐based electrochemiluminescence (ECL) assay coupled with capillary electrophoresis has been first established for the determination of ketotifen fumarate (KTF). Analytes were injected onto a separation capillary of 50 cm length (50 μm i.d., 360 μm o.d.) by electrokinetic injection for 10 s at 10 kV. Parameters related to the separation and detection were discussed and optimized. It was proved that 15 mm phosphate buffer at pH 8.0 could achieve the most favorable resolution, and the highest sensitivity of detection was obtained using the detection potential at 1.25 V and 5 mm Ru(bpy)32+ in 100 mm phosphate buffer at pH 8.0 in the detection reservoir. Under the optimized conditions, the ECL intensity was in proportion to KTF concentration over the range from 3.0 × 10?8 to 5.0 × 10?6 g mL?1 with a detection limit of 2.1 × 10?8 g mL?1 (3σ). The relative standard deviations of the ECL intensity and the migration time were 0.95 and 0.26%, respectively. The developed method was successfully applied to determine KTF contents in pharmaceuticals and human urine with recoveries between 99.5 and 107.0%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
We present an innovative and sensitive electrogenerated chemiluminescence (ECL) strategy for observing the surface feature of a single silica nanoparticle based on its collision with an ultramicroelectrode (UME). As an ECL luminophore, Ru(bpy)32+ molecules are doped into silica nanoparticles. The stochastic collision events of Ru(bpy)32+‐doped silica nanoparticles (RuSNPs) can be tracked by observing the ECL ‘blips’ from the ECL reaction of Ru(bpy)32+ with a coreactant in solution. When RuSNPs collided with UME, Ru(bpy)32+ molecules that only exist near the collision site of silica nanoparticles (NPs) were electrochemically oxidized to form Ru(bpy)33+, and then emitted light, because silica NPs are insulated. The inhomogeneous properties of silica nanoparticle surfaces will produce diverse ECL blips in intensity and shape. In addition, distribution gradients from the he Ru(bpy)32+ in a silica matrix also affect ECL blips. Some information on the surface properties of silica NPs can be obtained by observation of single silica collision events.  相似文献   

17.
A novel flow injection-chemiluminescence (FI–CL) approach is proposed for the assay of pioglitazone hydrochloride (PG-HCl) based on its enhancing influence on the tris(2,2′-bipyridyl)ruthenium(II)–silver(III) complex (Ru(bipy)32+-DPA) CL system in sulfuric acid medium. The possible CL reaction mechanism is discussed with CL and ultraviolet (UV) spectra. The optimum experimental conditions were found as: Ru(bipy)32+, 5.0 × 10−5 M; sulfuric acid, 1.0 × 10−3 M; diperiodatoargentate(III) (DPA), 1.0 × 10−4 M; potassium hydroxide, 1.0 × 10−3 M; flow rate 4.0 ml min−1 for each flow stream and sample loop volume, 180 μl. The CL intensity of PG-HCl was linear in the range of 1.0 × 10−3 to 5.0 mg L−1 (R2 = 0.9998, n = 10) with limit of detection [LOD, signal-to-noise ratio (S/N= 3] of 2.2 × 10−4 mg L−1, limit of quantification (LOQ, S/N = 10) of 6.7 × 10−4 mg L−1, relative standard deviation (RSD) of 1.0 to 3.3% and sampling rate of 106 h−1. The methodology was satisfactorily used to quantify PG-HCl in pharmaceutical tablets with recoveries ranging from 93.17 to 102.77 and RSD from 1.9 to 2.8%.  相似文献   

18.
A sensitive electrochemiluminescence (ECL) detection of etimicin at Tris(2,2′‐bipyridyl)ruthenium(II) [Ru(bpy)32+]–Nafion modified carbon paste electrodes was developed. The immobilized Ru(bpy)32+ shows good electrochemical and photochemical activities. Electrochemical and electrochemiluminescence characterizations of the modified carbon electrodes were made by means of cyclic voltammetry and electrochemical impendence spectroscopy. The modified electrode showed an electrocatalytic response to the oxidation of etimicin, producing a sensitized ECL signal. The ECL sensor showed a linear response to etimicin in the range of 8.0–160.0 ng mL?1 with a detection limit of 6.7 ng mL?1. This method for etimicin determination possessed good sensitivity and reproducibility with a coefficient of variation of 5.1% (n = 7) at 100 ng mL?1. The ECL sensor showed good selectivity and long‐term stability. Its surface could be renewed quickly and reproducibly by a simple polish step. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Amplification and detection of target DNA sequences are made possible in a polymerase chain reaction (PCR) by using a mixture of biotinylated and ruthenium(II) trisbipyridal (Ru(bpy)32+)-end-labelled primers. In this way, biotin for capture and Ru(bpy)32+ for detection are directly incorporated into the PCR product obviating subsequent probe hybridization. PCR of a bacterial DNA template from Alteromonas species strain JD6.5 using a cocktail of biotin- and Ru(bpy)32+-labelled primers amplified a 1 kilobase region. Serial dilution of PCR product followed by magnetic separation with Streptavidin (SA)-coated magnetic beads and an electrochemiluminescence (ECL) assay using the semi-automated QPCR System 5000 demonstrated sensitive (pg range) DNA detection. ECL assay of probe hybridization to a human immunodeficiency virus (HIV) sequence also produced pg level sensitivity. Quantitative DNA determination by ECL assay correlated well with visual detection of DNA in electrophoretic gels. However, DNA detection by ECL assay was 10 to 100 times more sensitive than conventional ethidium bromide staining. The combination of DNA-based magnetic separation with ECL assay provides a very sensitive and rapid method of quantitating DNA which, owing to its rapid and facile nature, may have many applications in the research, environmental monitoring, industrial and clinical fields.  相似文献   

20.
《Luminescence》2002,17(2):117-122
The electrogenerated chemiluminescence of Ru(bpy)32+/C2O42? system on a pre‐polarized Au electrode was studied using a potential‐resolved electrochemiluminescence (PRECL) method. Two anodic ECL peaks were observed at 1.22 V (vs. SCE) (EP1), 1.41 V (vs. SCE) (EP2), respectively. The effects of the concentration of oxalate and Ru(bpy)32+, adsorbed sulphur, CO2, O2, pH of the solution and pretreatment of the Au electrode on the two PRECL peaks were examined. The surface state of the pre‐oxidized gold electrode was also studied using the X‐ray photoelectron spectroscopy (XPS) technique. Moreover, comparative studies on i–E and I–E curves were carried out and a possible mechanism involving both the catalytic and the direct electro‐oxidation pathways was proposed for the ECL of Ru(bpy)32+/C2O42? system. EP1 is attributed to the Ru(bpy)32/3+ reaction catalysed by C2O42? to generate Ru(bpy)32+*. EP2 is likely because C2O42? was oxidized at the electrode to form CO2, followed by reaction with Ru(bpy)33+ to generate Ru(bpy)32+*. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号