首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel and sensitive gas sensor was developed for the determination of benzene based on its cataluminescence (CTL) by oxidation in air on the surface of hollow magnesium silicate spheres. Luminescence characteristics and optimum conditions were investigated. Results indicated that the as‐prepared magnesium silicate hollow spheres exhibited outstanding CTL properties such as stable intensity, high signal/noise values, and short response and recovery times. Under optimized conditions, benzene exhibited a broad linear range of 1–4500 ppm, with a correlation coefficient of 0.9946 and a limit of detection (signal‐to‐noise ratio (S/N) = 3) of 0.6 ppm, which was below the standard permitted concentration. The relative standard deviation (RSD) for 100 ppm benzene was 4.3% (n = 6). Furthermore, the gas sensor system showed outstanding selectivity for benzene compared with nine other common volatile organic compounds (VOCs). The proposed gas sensor showed good characteristics of high selectivity, fast response time and long lifetime, which suggested the promising application of magnesium silicate hollow spheres as a novel highly efficient CTL sensing material. The mechanism for the improved performance was also discussed based on the experimental results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A three‐dimensional hierarchical CdO nanostructure with a novel bio‐inspired morphology is reported. The field emission scanning electronic microscopy, transmission electron microscopy and X‐ray diffractometer were employed to characterize the as‐prepared samples. In gas‐sensing measurements, acetone and diethyl ether were employed as target gases to investigate cataluminescence (CTL) sensing properties of the CdO nanostructure. The results show that the as‐fabricated CdO nanostructure exhibited outstanding CTL properties such as stable intensity, high signal/noise values, short response and recovery time. The limit of detection of acetone and diethyl ether was ca. 6.5 ppm and 6.7 ppm, respectively, which was below the standard permitted concentrations. Additionally, a principal components analysis method was used to investigate the recognizable ability of the CTL sensor, and it was found that acetone and diethyl ether can be distinguished clearly. The performance of the bio‐inspired CdO nanostructure‐based sensor system suggested the promising application of the CdO nanostructure as a novel highly efficient CTL sensing material. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Wood furniture is an important source of indoor air pollution. To date, the detection of harmful substances in wood furniture has relied on the control of a single formaldehyde component, therefore the detection and evaluation of pollutants released by wood furniture are necessary. A novel method based on a cataluminescence (CTL) sensor system generated on the surface of nano‐3TiO2–2BiVO4 was proposed for the simultaneous detection of pollutants released by wood furniture. Formaldehyde and benzene were selected as a model to investigate the CTL‐sensing properties of the sensor system. Field emission scanning electronic microscopy (FESEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD) were employed to characterize the as‐prepared samples. The results showed that the as‐prepared test system exhibited outstanding CTL properties such as stable intensity, a high signal‐to‐noise ratio, and short response and recovery times. In addition, the limit of detection for formaldehyde and benzene was below the standard permitted concentrations. Moreover, the sensor system showed outstanding selectivity for formaldehyde and benzene compared with eight other common volatile organic compounds (VOCs). The performance of the sensor system will enable furniture VOC limit emissions standards to be promulgated as soon as possible. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The unregulated activity of inteins during expression and consequent side reactions during work‐up limits their widespread use in biotechnology and chemical biology. Therefore, we exploited a mechanism‐based approach to regulate intein autocatalysis for biotechnological application. The system, inspired by our previous structural studies, is based on reversible trapping of the intein's catalytic cysteine residue through a disulfide bond. Using standard mutagenesis, the disulfide trap can be implemented to impart redox control over different inteins and for a variety of applications both in vitro and in Escherichia coli. Thereby, we first enhanced the output for bioconjugation in intein‐mediated protein ligation, also referred to as expressed protein ligation, where precursor recovery and product yield were augmented fourfold to sixfold. Second, in bioseparation experiments, the redox trap boosted precursor recovery and product yield twofold. Finally, the disulfide‐trap intein technology stimulated development of a novel bacterial redox sensor. This sensor reliably identified hyperoxic E. coli harboring mutations that disrupt the reductive pathways for thioredoxin and glutathione, against a background of wild‐type cells. Biotechnol. Bioeng. 2013; 110: 1565–1573. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
A novel cataluminescence (CTL) sensor using ZrO2 nanoparticles as the sensing material was developed for the determination of trace dimethylamine in air samples based on the catalytic chemiluminescence (CL) of dimethylamine on the surface of ZrO2 nanoparticles. The CTL characteristics and the different factors on the signal intensity for the sensor, including nanomaterials, working temperature, wavelength and airflow rate, were investigated in detail. The CL intensity on ZrO2 nanoparticles was the strongest among the seven examined catalysts. This novel CL sensor showed high sensitivity and selectivity to gaseous dimethylamine at optimal temperature of 330°C. Quantitative analysis was performed at a wavelength of 620 nm. The linear range of CTL intensity vs concentration of gaseous dimethylamine was 4.71 × 10?3 to 7.07 × 10?2 mg L?1 (r = 0.9928) with a detection limit (3σ) of 6.47 × 10?4 mg L?1. No or only very low levels of interference were observed while the foreign substances such as benzene, hydrochloric acid, methylbenzene, chloroform, n‐hexane and water vapor were passing through the sensor. The response time of the sensor was less than 50 s, and the sensor had a long lifetime of more than 60 h. The sensor was successfully applied to the determination of dimethylamine in artificial air samples, and could potentially be applied to analysis of nerve agents such as Tabun (GA). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Nucleic acid amplification has long been used in biosensor technologies, such as DNA sensors, DNA chips and microarrays, due to its advantage of high sensitivity in detecting target DNA. However, dynamic monitoring of nucleic acid amplifications with traditional DNA sensors in real-time is difficult since a constant temperature must be maintained during detection. Thus, the piezoelectric sensor, one type of traditional DNA sensor, is not applicable in real-time monitoring PCR due to the dramatic change in temperature that occurs during reaction. In this study, we introduced strand displacement amplification (SDA), an well-developed nucleic acid amplification technique that can work under conditions of constant temperature, into the development of a novel piezoelectric sensor. Using the new SDA-piezoelectric DNA sensor, we designed a stable system for liquid-phase detection, in which the crystal oscillator plate was fixed by an easily adjustable screw-threaded clamping mechanism and successfully applied the new sensor system to real-time SDA monitoring of human cytomegalovirus (HCMV). This new technique overcomes the shortcomings of traditional DNA sensors in real-time monitoring of nucleic acid amplification. The technique has proved to be a markedly simplified procedure with a number of advantages, such as higher sensitivity, better time efficiency, and the ability of dynamic real-time detection.  相似文献   

7.
《IRBM》2023,44(3):100752
ObjectivesDiabetes is a serious, long-term disease and the use of continuous glucose monitoring sensors can reduce reliance on other painful invasive blood testing methods such as the finger blood glucose test. According to our work, a low-cost continuous glucose sensor has been developed based on electrochemical measurement techniques.MaterialsThe sensor is based on a two needles system; a gold and a silver electrode are integrated into a circular shaped electronic printed circuit board (PCB). The sensing part is based on biological electrochemical measurements. Glucose oxidase (Gox) was used as the active sensing element and ferrocene (Fc) as a mediator. Simple and low-cost coating methods were used; these methods are self-assembled monolayers and deep coating. This will reduce the final cost of the sensor as no expensive technique was used. The electrical subsystem contains a low-noise and low-power trans-impedance front-end as well as a single-chip low-power Bluetooth microcontroller with a 12-bit Analog-to-Digital Converter (ADC).ResultsThe sensor was tested in various concentrations of glucose. As a result of initial in vitro experiments, detailed analytical performance metrics are presented. The device has consistently shown a sensitivity of 3.059 mV/(mg/dl) reading with a linear range of 0-400 mg/dl.ConclusionThe proposed study shows promising results for glucose detection. Thus, this type of sensor can be used for different analyzes targeting biological applications after further investigations and analysis.  相似文献   

8.
Au/La2O3 nanomaterials were prepared through calcining Au‐modified La(OH)3 precursors. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X‐ray diffractometry (XRD) were employed to characterize the as‐prepared samples. Benzene, a common volatile organic compound, was selected as a model to investigate the cataluminescence (CTL)‐sensing properties of the Au/La2O3 nanomaterials. Results indicated that the as‐prepared Au/La2O3 exhibited outstanding CTL properties such as stable intensity, high signal‐to‐noise values, and short response and recovery times. Under optimized conditions, the benzene assay exhibited a broad linear range of 1–4000 ppm, with a limit of detection of 0.7 ppm, which was below the standard permitted concentrations. Furthermore, the gas sensor system showed outstanding selectivity for benzene compared with seven other types of common volatile organic compounds (VOCs). The proposed gas sensor showed good characteristics with high selectivity, fast response time and long lifetime, which suggested the promising application of the Au/La2O3 nanomaterials as a novel highly efficient CTL‐sensing material. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Non‐invasive detection of urinary bladder cancer remains a significant challenge. Urinary volatile organic compounds (VOCs) are a promising alternative to cell‐based biomarkers. Herein, we demonstrate a novel diagnosis system based on an optic fluorescence sensor array for detecting urinary bladder cancer VOCs biomarkers. This study describes a fluorescence‐based VOCs sensor array detecting system in detail. The choice of VOCs for the initial part was based on an extensive systematic search of the literature and then followed up using urinary samples from patients with urinary bladder transitional cell carcinoma. Canonical discriminant analysis and partial least squares discriminant analysis (PLS‐DA) were employed and correctly detected 31/48 urinary bladder cancer VOC biomarkers and achieved an overall 77.75% sensitivity and 93.25% specificity by PLS‐DA modelling. All five urine samples from bladder cancer patients, and five healthy controls were successfully identified with the same sensor arrays. Overall, the experiments in this study describe a real‐time platform for non‐invasive bladder cancer diagnosis using fluorescence‐based gas‐sensor arrays. Pure VOCs and urine samples from the patients proved such a system to be promising; however, further research is required using a larger population sample.   相似文献   

10.
Weifen Niu  Yan Liu 《Luminescence》2014,29(2):138-142
Quality control of foods is important for both industrial and personal concerns. In the past decade, a variety of sensor techniques have been developed and various applications realized for the analysis of foods in both the liquid and gas phases. In this paper, we report a chemiluminescence (CL) sensor array based on nine catalytic nanomaterials for the discrimination of eight vinegars. CL response patterns can be obtained as ‘fingerprints’ for a given compound on the sensor array and then discriminated using linear discriminant analysis (LDA). The experiments demonstrate that the sensor array has excellent differentiability and reversibility. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The growth of microorganisms on surfaces and interfaces as a biofilm is very common and plays important role in various areas such as material science, biomedicine, or waste treatment among others. Due to their inhomogeneous structure and the variance in the microorganism consortium, the analysis of biofilms represents a significant challenge. An online fluorescence sensor was developed that is able to measure the most important biological fluorophores (proteins, nicotinamide adenine dinucleotide, and flavin) in a noninvasive manner in biofilms, e.g. in bioelectrochemical applications. The sensor gives the opportunity to continuously draw conclusions on the metabolic state of the biofilm. The developed sensor has a diameter of 1 mm at the sensor tip and can be moved on and into the biofilm surface. In the first experiment, the measuring range of the sensor and the long‐term stability could be determined and the system applicability was confirmed. In addition, measurements in biofilm‐like structures could be performed. The formation of a wastewater‐based biofilm was monitored using the developed sensor, demonstrating the functionality of the sensor in a proof‐of‐principle experiment.  相似文献   

12.
Photonic induced immobilization is a novel technology that results in spatially oriented and spatially localized covalent coupling of biomolecules onto thiol-reactive surfaces. Immobilization using this technology has been achieved for a wide selection of proteins, such as hydrolytic enzymes (lipases/esterases, lysozyme), proteases (human plasminogen), alkaline phosphatase, immunoglobulins' Fab fragment (e.g., antibody against PSA [prostate specific antigen]), Major Histocompability Complex class I protein, pepsin, and trypsin. The reaction mechanism behind the reported new technology involves "photonic activation of disulfide bridges," i.e., light-induced breakage of disulfide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol-reactive surfaces (see Fig. 1). Interestingly, the spatial proximity of aromatic residues and disulfide bridges in proteins has been preserved throughout molecular evolution. The new photonic-induced method for immobilization of proteins preserves the native structural and functional properties of the immobilized protein, avoiding the use of one or more chemical/thermal steps. This technology allows for the creation of spatially oriented as well as spatially defined multiprotein/DNA high-density sensor arrays with spot size of 1 microm or less, and has clear potential for biomedical, bioelectronic, nanotechnology, and therapeutic applications.  相似文献   

13.
Metalloproteomics requires analytical techniques able to assess and quantify the inorganic species in metalloproteins. The most widely used methods are hyphenated techniques, based on the coupling of a high resolution chromatographic method with a high sensitivity method for metal analysis in solution. An alternative approach is the use of methods for solid sample analysis, combining metalloprotein separation by gel electrophoresis and direct analysis of the gels. Direct methods are based on beam analysis, such as lasers, ion beams or synchrotron radiation beams. The aim of this review article is to present the main features of synchrotron radiation based methods and their applications for metalloprotein analysis directly on electrophoresis gels. Synchrotron radiation X-ray fluorescence has been successfully employed for sensitive metal identification, and X-ray absorption spectroscopy for metal local structure speciation in proteins. Synchrotron based methods will be compared to ion beam and mass spectrometry for direct analysis of metalloproteins in electrophoresis gels.  相似文献   

14.
细胞传感器与芯片的研究进展   总被引:2,自引:1,他引:2  
细胞传感器(cell-based biosensor)与芯片(cell-based biochip)已成为后基因时代生物科学研究的重要工具,它们利用生活细胞作为研究对象或敏感元件,与传感器和芯片技术相结合,通过生物信号与物理、电化学等其他信号的转换,实现实时、快速、微量地检测细胞的功能信息和待测物的性质.在细胞生物学研究、环境监测和药物开发等领域有广泛的应用.综述近三年来细胞传感器与芯片技术的研究进展及应用,并提出展望.  相似文献   

15.
The quartz crystal microbalance (QCM) was first introduced as a mass sensor in gas phase and in vacuum. Since oscillator circuits capable of exciting shear vibrations of quartz resonators under liquid loading have been developed, the QCM became accepted as a new, powerful technique to follow adsorption processes at solid-liquid interfaces in chemical and biological research. Lately, the QCM technique has attracted considerable interest as a novel means to monitor cell-substrate interactions of mammalian cells in vitro. Because the establishment and modulation of cell-substrate contacts is important for many physiological processes, and potent techniques to measure these interactions noninvasively are rare, the present review highlights applications of the QCM technique in this field. The suitability of the QCM device to monitor attachment and spreading of mammalian cells in real time has been well established. The QCM response is dependent on the individual cell type that is examined. In order to identify the sources for these cell-type-specific results of QCM readings, and to understand the information content of the signal, attempts have been made to decompose the overall QCM response into subcellular contributions. The aforementioned subjects, together with a condensed introduction into the QCM technology, are included in this article.  相似文献   

16.
Triboelectric nanogenerators with a large number of desirable advantages, such as flexibility, light weight, and easy integration, are unique for sensor design. In this paper, based on the triboelectric nanogenerator (TENG), a cylindrical self‐powered multifunctional sensor (MS) with a translational‐rotary magnetic mechanism is proposed, which has the capacity to detect acceleration, force, and rotational parameters. The MS can transform a translational motion into a swing motion or a multicircle rotational motion of a low damping magnetic cylinder around a friction layer and hence drives the TENG to generate voltages output. For enhancing the output performance of the TENG, an electrode material with small work function, low resistance, and suitable surface topography is the best choice. According to the structure characteristic of the translational‐rotary magnetic mechanism, the MS can easily respond to a weak striking and can be used to measure the rotational parameters without the need of coaxial installation. Based on the MS, some applications are established, for example measuring the punch acceleration of a boxer, the hitting force and swing angle of golf club, which demonstrate the feasibility and efficiency of the MS and exhibit that the MS could find applications in sports.  相似文献   

17.
环境中铂族金属(PGMs)的赋存形态多样,形态分析对识别其生态风险具有十分重要的意义。本文综述了环境中3种主要铂族金属(铂、钯、铑)的形态分析方法,包括化学顺序提取、仪器联用技术及计算机模拟等,概述了这些方法的类型、特点及应用,同时阐述了它们存在的不足,并对未来发展方向进行了展望。化学顺序提取法普遍用于固相样品形态分析,当前研究中提出的提取条件和步骤多样,但不能很好地标准化;仪器联用技术在溶液元素形态分析上具有显著优势,毛细管电泳联用系统能够分离具有相同电泳能力的相似物质,但在分离能力和检出限方面不如液相色谱联用系统;计算机模拟则进一步拓展了形态分析的途径,能够实现复杂的形态计算。建议今后将多个方法进行结合,通过相互补充与完善,不断提高分析技术准确性。  相似文献   

18.
We present a sensitive and quick way to determine benzene, toluene and dimethylbenzene (BTEX) in air, applying a cataluminescence (CTL) sensor based on a nano‐sized composite material, γ‐Al2O3/PtO2. The factors that affect the sensor's performance were studied, including the sensing material, temperature, rate of air carrier and wavelength. It was shown that when Pt accounted for 0.2% of the sensing material, the rate of the air carrier that carries target gas was 450 mL/min, the determination wavelength was 400 nm and temperature was 236°C, this sensor showed the best CTL intensity to BTEX. In addition, the CTL intensity had a high linear relation with the concentration of BTEX, with a linear range from 0.5 to 100 mL/m3, and a detection limit 0.22 mL/m3. This nano‐sized material had a quick response within 1.5 s, short recovery time within 1 min and a long lifetime, showing good potential for a variety of applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Globally, sustainable provision of high‐quality safe water is a major challenge of the 21st century. Various chemical and biological monitoring analytics are presently utilized to guarantee the availability of high‐quality water. However, these techniques still face some challenges including high costs, complex design and onsite and online limitations. The recent technology of using microbial fuel cell (MFC)‐based biosensors holds outstanding potential for the rapid and real‐time monitoring of water source quality. MFCs have the advantages of simplicity in design and efficiency for onsite sensing. Even though some sensing applications of MFCs were previously studied, e.g. biochemical oxygen demand sensor, recently numerous research groups around the world have presented new practical applications of this technique, which combine multidisciplinary scientific knowledge in materials science, microbiology and electrochemistry fields. This review presents the most updated research on the utilization of MFCs as potential biosensors for monitoring water quality and considers the range of potentially toxic analytes that have so far been detected using this methodology. The advantages of MFCs over established technology are also considered as well as future work required to establish their routine use.  相似文献   

20.
An electrochemical glucose sensor has been integrated, together with a pH sensor, on a flexible polyimide substrate for in vivo applications. The glucose sensor is based on the measurement of H2O2 produced by the membrane-entrapped enzyme glucose oxidase (GOD). To minimize electrochemical interference, an electrode configuration was designed to perform differential measurements. The solid-state pH sensor employs a PVC-based neutral carrier membrane. The enzymes GOD and catalase were immobilized into two layers of photolithographically patterned hydrogels. The intended use of this device is the short-term monitoring of glucose and pH in intensive care units and operating theatres, especially for neurosurgical applications. The developed immobilization technique can also be used to create integrated multi-sensor chips for clinical analysers. The glucose and pH sensor exhibited excellent performance during tests in buffer solutions, serum and whole blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号