首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chirality》2017,29(6):273-281
Enantiomeric 1H and 13C NMR signal separation behaviors of various α‐amino acids and DL‐tartarate were investigated by using the samarium(III) and neodymium(III) complexes with (S ,S )‐ethylenediamine‐N ,N' ‐disuccinate as chiral shift reagents. A relatively smaller concentration ratio of the lanthanide(III) complex to substrates was suitable for the neodymium(III) complex compared with the samarium(III) one, striking a balance between relatively greater signal separation and broadening. To clarify the difference in the signal separation behavior, the chemical shifts of β‐protons for fully bound D‐ and L‐alanine (δb(D) and δb(L)) and their adduct formation constants (K s) were obtained for both metal complexes. Preference for D‐alanine was similarly observed for both complexes, while it was revealed that the difference between the δb(D) and δb(L) values is the significant factor to determine the enantiomeric signal separation. The neodymium(III) and samarium(III) complexes can be used complementarily for higher and smaller concentration ranges of substrates, respectively, because the neodymium(III) complex gives the larger difference between the δb(D) and δb(L) values with greater signal broadening compared to the samarium(III) complex.  相似文献   

2.
The compound (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid was evaluated as a chiral nuclear magnetic resonance (NMR) solvating agent for a series of diamines and bicyclic β‐amino acids. The amine must be protonated for strong association with the crown ether. An advantage of (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid over many other crown ethers is that it undergoes a neutralization reaction with neutral amines to form the protonated species needed for binding. Twelve primary diamines in neutral and protonated forms were evaluated. Diamines with aryl and aliphatic groups were examined. Some are atropisomers with equivalent amine groups. Others have two nonequivalent amine groups. Association equilibria for these systems are complex, given the potential formation of 2:1, 1:1, and 1:2 crown‐amine complexes and given the various charged species in solution for mixtures of the crown ether with the neutral amine. The crown ether produced enantiomeric differentiation in the 1H NMR spectrum of one or more resonances for every diamine substrate. Also, a series of five bicyclic β‐amino acids were examined and (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid caused enantiomeric differentiation in the 1H NMR spectrum of three or more resonances of each compound. Chirality 27:708–715, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
N‐[1‐(4‐(4‐fluorophenyl)‐2,6‐dioxocyclohexylidene)ethyl] (Fde) protected amino acids have been prepared and applied in solid‐phase peptide synthesis monitored by gel‐phase 19F NMR spectroscopy. The Fde protective group could be cleaved with 2% hydrazine or 5% hydroxylamine solution in DMF as determined with gel‐phase 19F NMR spectroscopy. The dipeptide Ac‐L ‐Val‐L ‐Val‐NH2 12 was constructed using Fde‐L ‐Val‐OH and no noticeable racemization took place during the amino acid coupling with N,N′‐diisopropylcarbodiimide and 1‐hydroxy‐7‐azabenzotriazole or Fde deblocking. To extend the scope of Fde protection, the hydrophobic nonapeptide LLLLTVLTV from the signal sequence of mucin MUC1 was successfully prepared using Fde‐L ‐Leu‐OH at diagnostic positions. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Chiral ionic liquids (CILs) with amino acids as cations have been applied as novel chiral ligands coordinated with Cu2+ to separate tryptophan enantiomers in ligand exchange chromatography. Four kinds of amino acid ionic liquids, including [L‐Pro][CF3COO], [L‐Pro][NO3], [L‐Pro]2[SO4], and [L‐Phe][CF3COO] were successfully synthesized and used for separation of tryptophan enantiomers. To optimize the separation conditions, [L‐Pro][CF3COO] was selected as the model ligand. Some factors influencing the efficiency of chiral separation, such as copper ion concentration, CILs concentration, methanol ratio (methanol/H2O, v/v), and pH, were investigated. The obtained optimal separation conditions were as follows: 8.0 mmol/L Cu(OAc)2, 4.0 mmol/L [L‐Pro][CF3COO] ,and 20% (v/v) methanol at pH 3.6. Under the optimum conditions, acceptable enantioseparation of tryptophan enantiomers could be observed with a resolution of 1.89. The results demonstrate the good applicability of CILs with amino acids as cations for chiral separation. Furthermore, a comparative study was also conducted for exploring the mechanism of the CILs as new ligands in ligand exchange chromatography. Chirality 26:160–165, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Myung Ho Hyun 《Chirality》2015,27(9):576-588
Crown ether‐based chiral stationary phases (CSPs) have been known to be useful for the resolution of racemic primary amino compounds. In particular, CSPs based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid have been reported to be useful for the resolution of secondary amino compounds as well as primary amino compounds. In this article, the process of developing various CSPs based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid to improve the chiral recognition efficiency and/or the stability of the CSPs and their applications to the resolution of various primary and nonprimary amino compounds are reviewed. Chirality 27:576588, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
A chiral ligand‐exchange high‐performance liquid chromatography method was developed for the enantioseparation of ofloxacin and its six related substances termed impurities A, B, C, D, E, and F. The separation was performed on a conventional C18 column. Different organic modifiers, copper salts, amino acids, the ratio of Cu2+ to amino acid, pH of aqueous phase, and column temperature were optimized. The optimal mobile phase conditions were methanol‐water systems consisting of 5 mmol/L copper sulfate and 10 mmol/L L‐isoleucine (L‐Ile). Under such conditions, good enantioseparation of ofloxacin and impurities A, C, E, and F could be observed with resolutions (RS) of 3.54, 1.97, 3.21, 3.50, and 2.12, respectively. On the relationship between the thermodynamic parameters and structures of analytes, the mechanism of chiral recognition was investigated. It was concluded that ofloxacin and impurities A, C, E, and F were all enthalpically driven enantioseparation and that low column temperature was beneficial to enantioseparation. Furthermore, the structure–separation relationship of these analytes is also discussed. Chirality 27:843–849, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
A stereochemically safe high‐yielding procedure for linking unprotected as well as protected hydroxycarboxylic acids to chiral secondary alcohols via glycolic acid linker is proposed. L‐menthol has been linked with both enantiomers of mandelic, malic, and methoxyphenylacetic acid using bromo‐ or iodoacetyl group as a precursor of the glycolic acid linker. High‐field nuclear magnetic resonance (NMR) and chiral high‐performance liquid chromatography (HPLC) determination of high diastereomeric ratio (dr) (>99%) of the products bearing remote stereocenters was explored. Chiral HPLC allowed quantitation of the diastereomers up to dr 99.9/0.1. High‐field NMR quantitation of the diastereomeric and parent alcoholic impurities in esters was demonstrated at the molar 0.3% and 0.03% levels, respectively. These analyses were done via comparison of integral intensities from major component 13C satellites in 1H or even in 13C spectra to the 1H or 13C signals of impurities. Despite lower sensitivity, the last option generally has much better selectivity. In this way the dynamic resolution is brought down by two orders. Chirality 25:793–798, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The present work reports preparative enantioseparation of (RS)‐baclofen using thin‐layer chromatography (TLC) and high‐performance liquid chromatography (HPLC). Diastereomers were synthesized using a new monochloro‐s‐triazine‐based chiral derivatizing reagent (CDR), namely, N‐(4‐chloro‐6‐piperidinyl‐[1,3,5]‐triazine‐2‐yl)‐L‐phenylalanine, under microwave irradiation. Acetonitrile‐0.1% aq. triflouroacetic acid in gradient elution mode and CH3OH‐CH2Cl2 (4:5; v/v) were successful as mobile phase in HPLC and TLC, respectively. The two diastereomers were isolated by preparative TLC. Molecular dissymmetry was established by developing the lowest energy optimized structures of the diastereomers based on Density Functional Theory and with the help of 1H NMR showing anisotropic effect associated with aromatic ring of s‐triazine (in the CDR). The configuration of diastereomers was established as [L‐Phe‐(R)‐Bac] and [L‐Phe‐(S)‐Bac], where the first notation refers to the configuration of chiral auxiliary (of the CDR) and the second to that of the analyte Bac. Limits of detection were found to be 0.056 and 0.061 ng mL?1, respectively, for the two diastereomers. Determination of absolute configuration of the two diastereomers lent support to the elution order and separation mechanism.Chirality 27:299–305, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Four novel chiral amino alcohols were synthesized from D‐(+)‐camphor and utilized as ligands in a Cu(I)‐catalyzed asymmetric Henry reaction. The reactions were carried out under mild conditions with excellent enantioselectivities and moderate yields without the exclusion of air or moisture. The highest enantioselectivity was observed up to 94% enantiomeric excess (ee) with ligand L1 in toluene at room temperature. Chirality 27:761–765, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
A pyridine‐diacylhydrazone Schiff base ligand, L = 2,6‐bis[(3‐methoxy benzylidene)hydrazinocarbonyl]pyridine was prepared and characterized by single crystal X‐ray diffraction. Lanthanide complexes, Ln–L, {[LnL(NO3)2]NO3.xH2O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Er)} were prepared and characterized by elemental analysis, molar conductance, thermal analysis (TGA/DTGA), mass spectrometry (MS), Fourier transform infra‐red (FT‐IR) and nuclear magnetic resonance (NMR) spectroscopy. Ln–L complexes are isostructural with four binding sites provided by two nitro groups along with four coordination sites for L. Density functional theory (DFT) calculations on L and its cationic [LnL(NO3)2]+ complexes were carried out at the B3LYP/6–31G(d) level of theory. The FT‐IR vibrational wavenumbers were computed and compared with the experimentally values. The luminescence investigations of L and Ln–L indicated that Tb–L and Eu–L complexes showed the characteristic luminescence of Tb(III) and Eu(III) ions. Ln–L complexes show higher antioxidant activity than the parent L ligand.  相似文献   

11.
A simple one‐dimensional 13C NMR method is presented to discriminate between stereoisomers of organic compounds with more than one chiral center. By means of this method it is possible to discriminate between all eight stereoisomers of α‐tocopherol. To achieve this the chiral solvating agent (S)‐(+)‐1‐(9‐anthryl)‐2,2,2‐trifluoroethanol and the compound of interest were dissolved in high concentrations in chloroform‐d, and the nuclear magnetic resonance (NMR) spectrum was recorded at a low temperature. The individual stereoisomers of α‐tocopherol were assigned by spikes of the reference compounds. The method was also applied to six other representative examples. Chirality 27:850–855, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Efficient preparation of (R)‐2‐chloromandelic acid (R)-1 based on a recycle process of resolution is described. In the process, the desired (R)-1 was obtained by coordination‐mediated resolution with D‐O,O'‐di‐(p‐toluoyl)‐tartaric acid in the presence of Ca2+. Meanwhile, the undesired (S)-1 could be racemized in the presence of sodium hydroxide and the product was suitable for further resolution. A carbanion mechanism for the racemization of (S)-1 is proposed. Chirality 27:281–285, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Because of their unique 3D arrangement, naturally occurring Cinchona alkaloids and their synthetic derivatives have found wide‐ranging applications in chiral recognition. Recently, we determined the enantioselective properties of C‐9‐phosphate mixed triesters of quinine as versatile chiral solvating agents in nuclear magnetic resonance (NMR) spectroscopy. In the current study, we introduce new zwitterionic members of this class of molecules containing a negatively charged phosphate moiety (i.e., ethyl, n‐butyl and phenyl hydrogen quininyl phosphate). An efficient approach for synthesizing these compounds is elaborated, and full characterization, including conformational and autoaggregation phenomena studies, was performed. Therefore, their ability to induce NMR anisochrony of selected enantiomeric substrates (i.e., primarily N‐DNB‐protected amino acids and their methyl esters) was analyzed compared to uncharged diphenyl quininyl phosphate and its positively charged quaternary ammonium hydrochloride salt. In addition, 1H and 13C NMR experiments revealed their enantiodiscrimination potential toward novel analytes, such as secondary amines and nonprotected amino acids. Chirality 27:752–760, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
We describe the resolution of a planar chiral cationic iridium complex [Cp*Ir(η5‐2‐methyl‐oxodienyl)][OT f] ( 2 ) following the counterion strategy, where anion metathesis by Δ‐TRISPHAT generates the two diastereomers (pR, pS)‐[Cp*Ir(η5‐2‐methyl‐oxodienyl)][Δ‐TRISPHAT] ( 3a , 3a' ). Upon fractional crystallization both compounds were separated as confirmed by 1H nuclear magnetic resonance (NMR) and circular dichroism studies recorded in solution. The latter represents the key‐complex precursors for the enantioselective synthesis of metallated o‐quinone methide complexes ( 4a , 4a' ). Chirality 25:449–454, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
In this study, proteinogenic amino acids residues of dimeric dermorphin pentapeptides were replaced by the corresponding β3homo‐amino acids. The potency and selectivity of hybrid α/β dimeric dermorphin pentapeptides were evaluated by competetive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). Tha analog containing β3homo‐Tyr in place of Tyr (Tyr‐d ‐Ala‐Phe‐Gly‐β3homo‐Tyr‐NH‐)2 showed good μ receptor affinity and selectivity (IC50 = 0.302, IC50 ratio μ/δ = 68) and enzymatic stability in human plasma. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Hydrogen bonding and π‐π interactions take special part in the enantioselectivity task. In this regard, because of having both hydrogen acceptor and hydrogen donor groups, melamine derivatives become more of an issue for enantioselectivity. In the light of such information, triazine‐based chiral, fluorescence active novel thiazole derivatives L1 and L2 were designed and synthesized from (S)‐(?)‐2‐amino‐1‐butanol and (1S,2R)‐(+)‐2‐amino‐1,2‐diphenylethanol. The structural establishment of these compounds was made by spectroscopic methods such as FTIR, 1H, and 13C NMR. While the solution of these compounds in DMSO did not show any fluorescence emission, it was observed that the emission increased 44‐fold for L1 and 55‐fold for L2 in 95% water, similar to the aggregation‐induced emission (AIE) characterized compounds. In this regard, enantioselective capabilities of these compounds against carboxylic acids were tested, and in experiments carried out at a ratio of 40/60 DMSO/H2O, it was determined that R‐2ClMA increased the fluorescence emission of L1 chiral receptor by 2.59 times compared to S‐isomer.  相似文献   

17.
The optically active mixed‐ligand fac(S)‐tris(thiolato)rhodium(III) complexes, ΔLfac(S)‐[Rh(aet)2(L‐cys‐N,S)]? (aet = 2‐aminoethanethiolate, L‐cys = L‐cysteinate) ( 1 ) and ΔLLfac(S)‐[Rh(aet)(L‐cys‐N,S)2]2? were newly prepared by the equatorial preference of the carboxyl group in the coordinated L‐cys ligand. The amide formation reaction of 1 with 1,10‐diaminodecane and polyallylamine gave the diamine‐bridged dinuclear Rh(III) complex and the single‐chain polymer‐supported Rh(III) complex with retention of the ΔL configuration of 1 , respectively. These Rh(III) complexes reacted with Co(III) or Co(II) to give the linear‐type trinuclear structure with the S‐bridged Co(III) center and the two Δ‐Rh(III) terminal moieties. The polymer‐supported Rh(III) complex was applied not only to the CD spectropolarimetric detection and determination of a trace of precious metal ions such as Au(III), Pt(II), and Pd(II) but also to concentration and extraction of these metal ions into the solid polymer phase. Chirality 28:85–91, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
The reduction of the axially chiral N‐(o‐aryl)‐5,5‐dimethyl‐2,4‐oxazolidinediones by NaBH4 yielded axially chiral N‐(o‐aryl)‐4‐hydroxy‐5,5‐dimethyl‐2‐oxazolidinone enantiomers having a chiral center at C‐4, with 100% diastereoselectivity as has been shown by their 1H and 13C NMR spectra and by enantioselective HPLC analysis. The resolved enantiomeric isomers were found to interconvert thermally through an aldehyde intermediate formed upon ring cleavage via a latent ring‐chain‐ring tautomerization. It was found that the rate of enantiomerization depended on the size and the electronic effect of the ortho substituent present on the aryl ring bonded to the nitrogen of the heterocycle. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
A novel ligand, 1‐(naphthalen‐2‐yl)‐2‐(phenylsulthio)ethanone was synthesized using a new method and its two europium (Eu) (III) complexes were synthesized. The compounds were characterized by elemental analysis, coordination titration analysis, molar conductivity, infrared, thermo gravimetric analyzer‐differential scanning calorimetry (TGA‐DSC), 1H NMR and UV spectra. The composition was suggested as EuL5 · (ClO4)3 · 2H2O and EuL4 · phen(ClO4)3 · 2H2O (L = C10H7COCH2SOC6H5). The fluorescence spectra showed that the Eu(III) displayed strong characteristic metal‐centered fluorescence in the solid state. The ternary rare earth complex showed stronger fluorescence intensity than the binary rare earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.49 times as strong as that of the binary system. The phosphorescence spectra were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Enantiopure hemicryptophanes efficiently discriminate chiral ammonium neurotransmitters. The ephedrine and norephedrine molecules associate with hemicryptophane hosts to form 1:1 and 1:2 host‐guest complexes. Binding constants are determined by fitting the 1H nuclear magnetic resonance (NMR) titration curves to give β1 and β2 values, which are used to characterize the diastereomeric and enantiomeric discriminating potentials of the hosts. Chirality 25:47–479, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号