首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemistry and electrogenerated chemiluminescence (ECL) of Pb4Br11 3− in acetonitrile solution is reported. Pb4Br11 3− is formed in situ by the reaction of lead(II) and bromide ions with ECL generated upon sweep to positive potentials using tri-n-propylamine (TPrA) as an oxidative-reductive coreactant. An ECL efficiency (φecl) of 0.0079 was obtained compared to Ir(ppy)3 (ppy=2-phenylpyridine; φecl=1). The ECL intensity peaks at a potential corresponding to oxidation of TPrA and Pb4Br11 3− indicating that emission is from the lead-bromide cluster.  相似文献   

2.
Three ortho-metallated iridium complexes whose emission maxima fall in different regions of the electromagnetic spectrum were bound in either Nafion or poly(9-vinylcarbazole) and their electrogenerated chemiluminescence (ECL) reported. The reaction of F(Ir)pic [bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)-iridium III] with the oxidative-reductive co-reactant tri-n-propylamine (TPrA) resulted in ECL when the iridium complex was bound in Nafion. No significant ECL was observed for (btp)(2)Ir(acac) (bis[2,(2'-benzothienyl)-pyridinato-N,C3'](acetylacetonate)Ir(III)), and Ir(ppy)(3) (where ppy = 2-phenylpyridine) under these conditions. However, all three compounds displayed ECL with TPrA when bound in poly(9-vinylcarbazole).  相似文献   

3.
Encapsulation of proteins in poly(lactic-co-glycolic) acid (PLGA) microspheres by the water-in-oil-in-water (w/o/w) technique is very challenging because of the inherent physical instability of proteins. In particular, exposure of proteins to the first water-in-oil emulsion causes unwanted interface-induced protein inactivation and aggregation. We tested whether salts could afford stabilization of a model protein, hen egg-white lysozyme, against the detrimental events occurring at the w/o interface and subsequently upon w/o/w encapsulation. First, we investigated the effect of salts on the specific enzyme activity and generation of soluble precipitates and insoluble aggregates upon emulsification of an aqueous lysozyme solution with methylene chloride. It was found that lysozyme precipitation occurred upon emulsification. The amount of precipitate formed at salt concentrations between 10-100 mM was related to the position of the anion in the electroselectivity series (SO(4) (2-) > SCN(-) > Cl(-) > H(2)PO(4) (-)) while high salt concentrations (1M) led to > 80% of lysozyme precipitation regardless of the salt. The precipitates consisted of buffer-soluble protein precipitates and water-insoluble noncovalent aggregates. Lysozyme precipitation, aggregation, and inactivation upon emulsification were largely prevented in the presence of 50 mM KH(2)PO(4) while KSCN caused an increase in these detrimental events. Second, it was tested whether the improved structural integrity of lysozyme at the w/o interface would improve its stability upon w/o/w encapsulation in PLGA microspheres. Some conditions indeed led to improved stability, particularly codissolving lysozyme with 50 mM KH(2)PO(4) reduced loss in the specific activity and aggregation. In conclusion, the type and concentration of salts is a critical parameter when encapsulating protein in PLGA microspheres.  相似文献   

4.
Iridium (III) 2-phenylpyridine (ppy) complexes with two suitable monodentate L ligands [Ir(ppy)(2)(L)(2)](+) (ppy = 2-phenylpyridine, py = pyridine, L = 4-pyCN 1, 4-pyCHO 2, 4-pyCl 3, py 4, 4-pyNH(2) 5) were studied by density functional theory (DFT) and time-dependent DFT methods. The influences of ligands L on the electronic structure and photophysical properties were investigated in detail. The compositions and energy levels of the lowest unoccupied molecular orbital (LUMO) are changed more significantly than those of the highest occupied molecular (HOMO) by tuning L ligands. With the electronegativity decrease of L ligands 4-pyCN > 4-pyCHO > 4-pyCl > py > 4-pyNH(2), the LUMO distributing changes from py to ppy, and the absorptions have an obvious red shift. The calculated results showed that the transition character of the absorption and emission can be changed by adjusting the electronegativity of the L ligands. In addition, no solvent effect was observed in the absorptions and emissions.  相似文献   

5.
Quenching effects of bergenin, based on the electrochemiluminescence (ECL) of the tris(2,2′‐bipyridyl)‐ruthenium(II) (Ru(bpy)32+)/tri‐n‐propylamine (TPrA) system in aqueous solution, is been described. The quenching behavior can be observed with a 100‐fold excess of bergenin over Ru(bpy)32+. In the presence of 0.1 m TPrA, the Stern–Volmer constant (KSV) of the ECL quenching is as high as 1.16 × 104 M?1 for bergenin. The logarithmic plot of the inhibited ECL versus logarithmic plot of the concentration of bergenin was linear over the range 3.0 × 10?6–1.0 × 10?4 mol/L. The corresponding limit of detection was 6.0 × 10?7 mol/L for bergenin (S/N = 3). In the mechanism of quenching it is believed that the competition of the active free radicals between Ru(bpy)32+/TPrA and bergenin was the key factor for the ECL inhibition of the system. Photoluminescence, cyclic voltammetry, coupled with bulk electrolysis, supports the supposition mechanism of the Ru(bpy)32+/TPrA–bergenin system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Amyloid fibril formation by peptide LYS (11-36) in aqueous trifluoroethanol   总被引:1,自引:0,他引:1  
Peptide LYS (11-36), derived from the beta-sheet region of T4 lysozyme, forms an amyloid fibril in aqueous trifluoroethanol (TFE) at elevated temperature. The peptide has a moderate alpha-helix content in 20 and 50% (v/v) TFE solution; large quantities of fibrils were formed after incubation at 55 degrees C for 2 weeks as monitored by a thioflavin T fluorescence assay. No fibrils were observed when the peptide initially existed predominantly as a random coil or as a complete alpha helix. Our results suggest that a moderate amount of alpha helix and random coil present in the peptide initially facilitates the fibril-formation process, but a high alpha-helix content inhibits fibril formation. Transmission electron microscopy revealed several types of fibril morphologies at different TFE concentrations. The fibrils were highly twisted and consisted of interleaved protofilaments in 50% TFE, while smooth and flat ribbonlike fibrils were found in 20% TFE. In 50% TFE, the fibril growth rate of LYS (11-36) was found to depend strongly on peptide concentration and seeding but was insensitive to solution pH and ionic strength.  相似文献   

7.
The reaction of the cyclometalated IrIII dimer [{(ppy)2Ir}2(μ-Cl)2] (ppyH = 2-phenylpyridine) with silver triflate followed by a multidentate ligand [1,4-bis[3-(2-pyridyl)pyrazolylmethyl]benzene (bppb), 1,3,5-tri[3-(2-pyridyl)pyrazolylmethyl]-2,4,6-trimethylbenzene (tppb), 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), 2-chloro-4,6-bis(dipyridin-2-ylamino)-1,3,5-triazine (cddt) or 2,4,6-tris(dipyridin-2-ylamino)-1,3,5-triazine (tdat)] afforded di- or trinuclear compounds: [{Ir(ppy)2}2(μ-bppb)](OTf)2 (1), [{Ir(ppy)2}3(μ-tppb)](OTf)3 (2), [{Ir(ppy)2}2(μ-tptz-OH)](OTf) (3), [{Ir(ppy)2}2(μ-cddt)](OTf)2 (4) and [{Ir(ppy)2}2(μ-tdat)](OTf)2 (5). All of these compounds contain cationic metal cores with corresponding triflate counter anions. The molecular structures of 1-4 reveal that the structural feature of the Ir(ppy)2 center of the starting precursor is conserved in the products. Also, because of the nature of the ligands, there is virtually no electronic communication between the IrIII centers except in 3 where a ring hydroxylation at the triazine carbon atom is effected upon metalation. Compounds 1-5 are robust in solution where they retain their structural integrity. The UV-Vis and emission spectra of 1-5 compounds are very similar to each other with the exception of 3 which seems to possess a different electronic structure. All the compounds are luminescent at room temperature. The emission bands indicate significant contribution from 3LC. Increase in the number of ‘Ir(ppy)2’ units does not have any effect on emission color.  相似文献   

8.
《Inorganica chimica acta》2006,359(5):1666-1672
Two novel ligands containing a functionalized N  N chelating moiety (pbpy-OBut and tpy-COOH, respectively) were treated with [Ir(ppy)2(μ-Cl)]2 (ppy = 2-(2-pyridyl)phenyl), leading to the cationic cyclometalated complexes [Ir(ppy)2(pbpy-OBut)]+ (2) (pbpy-OBut = 4-{4′-(4-phenyloxy)-6′-phenyl-2,2′-bipyridyl}butene) and [Ir(ppy)2(tpy-COOH)]+ (3) (tpy-COOH = 4′-(4-carboxyphenyl)-2,2′:6′,2″-terpyridine). Complexes 2 and 3 exhibit intense room temperature luminescence both in solution and as solid films. Assignment of the emissive behavior to a 3LLCT (ppy-to-N  N) excited state is proposed.  相似文献   

9.
By using 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone (pmip) as the ancillary ligand, the cyclometalated complex: bis-(2-phenylpyridine)-(pmip)-iridium [(ppy)2Ir(pmip)] was synthesized. Its crystal structure, absorption and emission were compared with those of its analogue, the frequently used electrophosphorescent material (ppy)2Ir(dbm) [bis-(2-phenylpyridine)-(dibenzoylmethane) iridium]. For (ppy)2Ir(pmip) in dichloromethane, the emission is highly structured and the intensity is 5 times higher than that of (ppy)2Ir(dbm). It is a result of the higher triplet energy level of pmip relative to that of dbm. In solid state, green emission of (ppy)2Ir(pmip) peaked at 550 nm was observed with a quantum efficiency 0.31% in contrast to the emission at 626 nm with a quantum efficiency of 0.76% for (ppy)2Ir(dbm). The bathochromical shift and higher efficiency in crystallized (ppy)2Ir(dbm) was explained by the stronger π-π intermolecular interactions which is unique to in solid state (ppy)2Ir(dbm) crystals.  相似文献   

10.
In this study, electrochemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′‐bipyridyl) using ascorbic acid (H2A) as co‐reactant was investigated in an aqueous solution. When H2A was co‐existent in a Ru(bpy)32+‐containing buffer solution, ECL peaks were observed at a potential corresponding to the oxidation of Ru(bpy)32+, and the intensity was proportional to H2A concentration at lower concentration levels. The formation of the excited state *Ru(bpy)32+ was confirmed to result from the co‐reaction between Ru(bpy)33+and the intermediate of ascorbate anion radical (A•), which showed the maximum ECL at pH = 8.8. It is our first finding that the ECL intensity would be quenched significantly when the concentration of H2A was relatively higher, or upon ultrasonic irradiation. In most instances, quenching is observed with four‐fold excess of H2A over Ru(bpy)32+. The diffusional self‐quenching scheme as well as the possible reaction pathways involved in the Ru(bpy)32+–H2A ECL system are discussed in this study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The electrogenerated chemiluminescence (ECL) of platinum (II) octaethyl-porphyrin (PtOEP) in acetonitrile:methylene chloride (CH3CN:CH2Cl2, 50:50 v/v) and CH2Cl2 is reported. ECL was generated upon sweep to positive potentials using tri-n-propylamine (TPrA) as an oxidative-reductive coreactant. ECL efficiencies (?ecl) of 0.18 in CH3CN:CH2Cl2 (50:50 v/v) and 3.90 in methylene chloride were obtained using Ru(bpy)3(PF6)2 (bpy = 2,2′-bipyridine) as a relative standard (?ecl = 1). The ECL intensity peaks at a potential corresponding to oxidation of PtOEP and TPrA, and ECL emission spectra are nearly identical to photoluminescence emission spectra, indicating that emission is from the PtOEP triplet state.  相似文献   

12.
The photoluminescence (PL) and electrogenerated chemiluminescence (ECL) of [H2(MPy3,4DMPP)Ru(bpy)2Cl](PF6), where H2MPy3,4DMPP = meso-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin and bpy = 2,2′-bipyridine, are reported in acetonitrile. The compound has a complex absorbance spectrum with bands characteristic of both the porphyrin and ruthenium moieties. PL emission maxim are observed at 655 nm when excited at the maximum absorption intensity corresponding to the porphyrin Soret π → π band, and around 600 nm when excited at wavelengths corresponding to Ru(dπ)-bpy (π) MLCT transition. The photoluminescence efficiency (?em) of the 655 nm emission is 0.039 and that of the free porphyrin is 0.69 compared to at 0.042.[H2(MPy3,4DMPP)Ru(bpy)2Cl](PF6) displays complex electrochemical behavior, with one electrochemically reversible RuII-RuIII oxidation and two quasi-reversible waves at more cathodic potentials corresponding to the porphyrin moiety. Oxidative ECL was generated using the coreactant tri-n-propylamine (TPrA). ECL efficiencies (?ecl) were 0.14 for [H2(MPy3,4DMPP)Ru(bpy)2Cl]+ and 0.099 for H2MPy3,4DMPP using as the standard (?ecl = 1). ECL intensity was linear with respect to concentration from 1 to 0.001 μM.The ECL intensity peaks at potentials corresponding to oxidation both the ruthenium and porphyrin moieties as well as TPrA, indicating that multiple pathways for formation of the excited state are possible. However, an ECL spectrum shows a band similar in energy and shape to that of the Soret emission (655 nm for the PL and 656 nm for the ECL, respectively), indicating the same excited state is formed in each experiment.  相似文献   

13.
The N‐terminal 1–34 segments of both parathyroid hormone (PTH) and parathyroid hormone‐related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences between the two hormones in their amino acid sequence. Recently, it was shown that in (1–34)PTH/PTHrP segmental hybrid peptides, the N‐terminal 1–14 segment of PTHrP is incompatible with the C‐terminal 15–34 region of PTH leading to substantial reduction in potency. The sites of incompatibility were identified as positions 5 in PTH and 19 in PTHrP. In the present paper we describe the synthesis, biological evaluation, and conformational characterization of two point‐mutated PTH/PTHrP 1–34 hybrids in which the arginine residues at positions 19 and 21 of the native sequence of PTHrP have been replaced by valine (hybrid V21) and glutamic acid (hybrid E19), respectively, taken from the PTH sequence. Hybrid V21 exhibits both high receptor affinity and biological potency, while hybrid E19 binds weakly and is poorly active. The conformational properties of the two hybrids were studied in aqueous solution containing dodecylphosphocholine (DPC) micelles and in water/2,2,2‐trifluoroethanol (TFE) mixtures. Upon addition of TFE or DPC micelles to the aqueous solution, both hybrids undergo a coil‐helix transition. The maximum helix content in 1 : 1 water/TFE, obtained by CD data for both hybrids, is ∼ 80%. In the presence of DPC micelles, the maximum helix content is ∼ 40%. The conformational properties of the two hybrids in the micellar system were further investigated by combined 2D‐nmr, distance geometry (DG), and molecular dynamics (MD) calculations. The common structural motif, consisting of two helical segments located at N‐ and C‐termini, was observed in both hybrids. However, the biologically potent hybrid V21 exhibits two flexible sites, centered at residues 12 and 19 and connecting helical segments, while the flexibility sites in the weakly active hybrid E19 are located at position 11 and in the sequence 20–26. Our findings support the hypothesis that the presence and location of flexibility points between helical segments are essential for enabling the active analogs to fold into the bioactive conformation upon interaction with the receptor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 525–535, 1999  相似文献   

14.
BACKGROUND: Two calibration methods have been proposed for determining the relation between the fluorescence ratio of a pH-sensitive fluorescent indicator and intracellular pH (pHi). The first method uses nigericin to clamp pHi to external pH (pHe) and the second is the null point method. We compared these different calibration methods, solution conditions, and temperatures by using flow cytometry and the fluorescent dye 1,5- (and-6)-carboxy seminaphtorhodafluor-1-acetoxymethyl ester with an NS0 cell line. METHODS: The nigericin method was performed in glucose solutions supplemented with KCl and 2-(N-morpholino)ethane sulphonic acid plus tris(hydroxymethyl)aminomethane (solution 1A), a mixture of K2HPO4/KH2PO4 in glucose-solution supplemented solutions (solution 2A), or bicarbonate buffered growth medium supplemented with K2HPO4/KH2PO4 (solution 2B); this allowed a range of pHe values to be used. The effect of temperature (22 degrees C or 37 degrees C) on the nigericin calibration curve was also investigated. The null point method was performed by using a series of solutions with a mixture of weak acid and base with a known pHi response. RESULTS: Using solution 1A as the calibration solution resulted in acidic values of pHi for cells cultured in medium as compared with the values achieved with solution 2A. Using solution 2B did not affect the calibration curve. For the temperatures considered in this study, there was no affect on the calibration curve, but temperature did affect the pHi value of cells in phosphate buffered saline. The pseudo-null point method used with flow cytometry resulted in a calibration curve that was significantly different (P<0.05) from that achieved using the nigericin method. CONCLUSIONS: Our data indicates that the choice of calibration solution can affect the reported pHi value; therefore, careful choice of solution is important.  相似文献   

15.
This study describes the quenching effects of p‐aminobenzenesulfonic acid (p‐ABSA) based on electrochemiluminescence (ECL) of the tris (2,2‐bipyridyl)‐ruthenium(II)(Ru(bpy)32+)/tri‐n‐propylamine (TPrA) system in aqueous solution. Quenching behaviours were observed with a 200‐fold excess of p‐ABSA over Ru(bpy)32+. In the presence of 0.1 M TPrA, the Stern‐Volmer constant (KSV) of ECL quenching was as high as 1.39 × 104 M‐1 for p‐ABSA. The logarithmic plot of inhibited ECL versus concentration of p‐ABSA was linear over the range of 6.0 × 10‐6 ‐3.0 × 10‐4 mol/L. The corresponding limit of detection was 1.2 × 10‐6 mol/L for p‐ABSA (S/N = 3). The mechanism of quenching is believed to involve an energy transfer from the excited‐state luminophore to a dimer of p‐ABSA and the adsorption of free radicals of p‐ABSA at the electrode surface that impeded the oxidation of the Ru(bpy)32+/TPrA system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
DNA fragments crystallize in an unpredictable manner, and relationships between their crystal and solution conformations still are not known. We have studied, using circular dichroism spectroscopy, solution conformations of (G + C)-rich DNA fragments, the crystal structures of which were solved in the laboratory of one of the present authors. In aqueous trifluorethanol (TFE) solutions, all of the examined oligonucleotides adopted the same type of double helix as in the crystal. Specifically, the dodecamer d(CCCCCGCGGGGG) crystalized as A-DNA and isomerized into A-DNA at high TFE concentrations. On the other hand, the hexamer d(CCGCGG) crystallized in Z-form containing tilted base pairs, and high TFE concentrations cooperatively transformed it into the same Z-form as adopted by the RNA hexamer r(CGCGCG), although d(CCGCGG) could isomerize into Z-DNA in the NaCl + NiCl2) aqueous solution. The fragments crystallizing as B-DNA remained B-DNA, regardless of the solution conditions, unless they denatured or aggregated. Effects on the oligonucleotide conformation of 2-methyl-2,4-pentanediol and other crystallization agents were also studied. 2-Methyl-2,4-pentanediol induced the same conformational transitions as TFE but, in addition, caused an oligonucleotide condensation that was also promoted by the other crystallization agents. The present results indicate that the crystal double helices of DNA are stable in aqueous TFE rather than aqueous solution.  相似文献   

17.
Several iridium complexes containing trifluoromethyl-substituted phenyl pyridine based ligands have been synthesized and characterized to try to investigate the effect of trifluoromethyl group and its position on physical properties. The complexes have the general structure of (C-N)2Ir(LX), where the C-N are 2-phenylpyridine (ppy), 2-(3,5-bis-trifluoromethylphenyl)pyridine (fmppy), 2-(3,5-bis-trifluoromethylphenyl)-4-methylpyridine (fmpmpy), 2-(3,5-bis-trifluoromethylphenyl)-5-trifluoromethylpyridine (tfmppy) and the LX are 2-picolinic acid (pic) and acetylacetonate (acac). The (tfmppy)2Ir(pic) was characterized using X-ray crystallography. The absorption, emission, and thermostability of the complexes were systematically investigated. Introduction of CF3 substituents into 2-phenylpyridine in (ppy)2Ir(pic) lead to some decrease in the sublimation temperature, which is more suitable to devices fabrication. The experimental results revealed that the emissive colors of these complexes could be finely tuned by suitable incorporation of trifluoromethyl substituents on the 2-phenylpyridine ligand, obtaining bright green-blue emission λmax values from 471 to 489 nm in CH2Cl2 solution at room temperature, with high solution quantum efficiencies ranging from 0.37 to 1.89 relative to Ir(ppy)3.  相似文献   

18.
This work outlines the synthesis of a non-emissive, cyclometalated Ir(III) complex, Ir(ppy)2(H2O)2+ (Ir1), which elicits a rapid, long-lived phosphorescent signal when coordinated to a histidine-containing protein immobilized on the surface of a magnetic particle. Synthesis of Ir1, in high yields,is complete O/N and involves splitting of the parent cyclometalated Ir(III) chloro-bridged dimer into two equivalents of the solvated complex.To confirm specificity, several amino acids were probed for coordination activity when added to the synthesized probe, and only histidine elicited a signal response. Using BNT-II, a branched peptide mimic of the malarial biomarker Histidine Rich Protein II (pfHRP-II), the iridium probe was validated as a tool for HRP-II detection. Quenching effects were noted in the BNT-II/Ir1 titration when compared to L-Histidine/Ir1, but these were attributed to steric hindrance and triplet state quenching. Biolayer interferometry was used to determine real-time kinetics of interaction of Ir1 with BNT-II. Once the system was optimized, the limit of detection of rcHRP-II using the probe was found to be 12.8 nM in solution. When this protein was immobilized on the surface of a 50 µm magnetic agarose particle, the limit of detection was 14.5 nM. The robust signal response of this inorganic probe, as well as its flexibility of use in solution or immobilized on a surface, can lend itself toward a variety of applications, from diagnostic use to imaging.  相似文献   

19.
烟梗为原料固态发酵生产果胶酶   总被引:1,自引:0,他引:1  
以烟梗为主要原料,采用单因素和正交实验对筛选到的丝状菌JXY-17固态发酵产果胶酶的培养基进行了优化,正交实验结果表明,影响该菌株产果胶酶的因素依次为含水量(料水比)(A)>(NH4)2SO4(B)>KH2PO4(D)>吐温-80(C),产酶培养基组成为A3B2C2D1,即固液比1∶1.5,(NH4)2SO4 5.0%,吐温-80 0.10%,KH2 PO40.20%.采用该固态发酵培养基,自然pH,接种量25 mL,装料量为50 g(干基)/1000 mL三角瓶,30℃恒温培养6d,产酶最高达8171.35U/g干曲,为初始酶活的3.8倍.提取酶液后的残余烟梗还可用于提取烟梗纤维类物质.残余烟梗的化学成分检测结果表明,与原始烟梗(或对照)相比,其果胶质降低了45%左右,残余烟梗固形物回收率约50%.  相似文献   

20.
The major proteoglycan in cartilage (aggrecan) is a complex macromolecule with numerous chondroitin sulphate, keratan sulphate, and oligosaccharide substituents. It has been proposed that this macromolecule has an important role in regulating mineralization in this tissue, a process which is initiated by the deposition of apatite in matrix vesicles. We have used a liposome-centred endogenous precipitation method as a model for matrix vesicle mineralization to study the effect of the rat chondrosarcoma aggrecan and its chondroitin sulphate and core protein components on apatite formation from solution. Precipitation was initiated by encapsulating buffered (pH 7.4) 50 mmol/l KH2PO4 solutions in the aqueous centres of 7:2:1 phosphatidylcholine:dicetylphosphate:cholesterol liposomes, adding 2.25-2.65 mmol/l Ca2+ and 1.5 mmol/l total inorganic phosphate (PO4) to the suspending medium (pH 7.4, 22 degrees C), then making the intervening lipid membranes permeable to the Ca2+ ions with the calcium ionophore X-537A. Aggrecan (0.5%) in the suspending medium had no effect on intraliposomal precipitation, but severely reduced (approximately 70% reduction at 24 h) its subsequent spread into the medium. The chondroitin sulphate and core protein were similarly inhibitory. The degree to which aggrecan and its constituent parts inhibited precipitation correlated with their capacity to bind Ca2+ ions. These findings suggest that functional groups in aggrecan blocked apatite growth by linking via Ca2+ bridges to growth sites on the crystal surfaces. Similar Ca-mediated interactions may well have a critical regulatory role in cartilage mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号