首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanism of tumor necrosis factor (TNF)-induced nonapoptotic cell death is largely unknown, although the mechanism of TNF-induced apoptosis has been studied extensively. In wild-type mouse embryonic fibroblast cells under a caspase-inhibited condition, TNF effectively induced cell death that morphologically resembled necrosis. In this study, we utilized gene knockout mouse embryonic fibroblasts cells and found that tumor necrosis factor receptor (TNFR) I mediates TNF-induced necrotic cell death, and that RIP, FADD, and TRAF2 are critical components of the signaling cascade of this TNF-induced necrotic cell death. Inhibitors of NF-kappaB facilitated TNF-induced necrotic cell death, suggesting that NF-kappaB suppresses the necrotic cell death pathway. JNK, p38, and ERK activation seem not to be required for this type of cell death because mitogen-activated protein kinase inhibitors did not significantly affect TNF-induced necrotic cell death. In agreement with the previous reports that the reactive oxygen species (ROS) may play an important role in this type of cell death, the ROS scavenger butylated hydroxyanisole efficiently blocked TNF-induced necrotic cell death. Interestingly, during TNF-induced necrotic cell death, the cellular ROS level was significantly elevated in wild type, but not in RIP(-/-), TRAF2(-/-), and FADD(-/-) cells. These results suggest that RIP, TRAF2, and FADD are crucial in mediating ROS accumulation in TNF-induced necrotic cell death.  相似文献   

2.
Nitric oxide (NO) is a highly reactive free radical with profound tumoricidal activity, produced by both macrophages and tumor cells. While it has been postulated that necrotic tumor cells can augment macrophage anti-tumor action, we investigated the effect of tumor cell necrosis on NO synthesis and viability of L929 fibrosarcoma and C6 astrocytoma cell lines. The presence of necrotic tumor cells dose-dependently reduced NO production in IFN-gamma stimulated L929 cells, and rescued them from NO-dependent autotoxicity. This effect was mediated through soluble products, since it was completely preserved after blocking the contact between the necrotic and live cells. On the other hand, apoptotic tumor cells were unable to suppress IFN-gamma-triggered NO release and subsequent decrease of cell respiration in L929 cultures. Similar results were obtained with C6 astrocytoma cell line. This down-regulation of NO synthesis in response to necrotic cell products was not specific for tumor cell lines, since necrotic tumor cells markedly suppressed NO production in cytokine-stimulated primary fibroblasts and astrocytes. In contrast, both murine and rat peritoneal macrophages readily increased their basal or IFN-gamma-induced NO production when incubated with necrotic tumor cells. Taken together, these results suggest that tumor cell necrosis might promote or restrict tumor growth through suppression or enhancement of NO synthesis in tumor cells and macrophages, respectively, with net effect presumably depending on the extent of macrophage infiltration.  相似文献   

3.
Apoptotic cell death eventually results in secondary necrotic cell death, whereas caspase-independent primary necrotic cell death has been reported and its mechanism involving RIP1 and RIP3 has been recently elucidated. Dual staining with fluorescent Annexin V and propidium iodide (PI) has been used to discriminate apoptotic and necrotic cell death, in which Annexin V-positive/PI-negative staining is regarded as apoptosis and PI-positive staining as necrosis. Here we demonstrate that primary necrotic cells unexpectedly show Annexin V-positive/PI-negative staining before they become PI-positive, and that primary necrotic and apoptotic Annexin V-positive/PI-negative cells can be discriminated by necrostatin-1, an inhibitor of primary necrosis by inhibition of RIP1.  相似文献   

4.
Cells that become necrotic or apoptotic through tissue damage or during normal cellular turnover are usually rapidly cleared from the circulation and tissues by phagocytic cells. A number of soluble proteins have been identified that facilitate the phagocytosis of apoptotic cells, but few proteins have been defined that selectively opsonize necrotic cells. Previous studies have shown that histidine-rich glycoprotein (HRG), an abundant (approximately 100 microg/ml) 75-kDa plasma glycoprotein, binds to cell surface heparan sulfate on viable cells and cross-links other ligands, such as plasminogen, to the cell surface. In this study we have demonstrated that HRG also binds very strongly, in a heparan sulfate-independent manner, to cytoplasmic ligand(s) exposed in necrotic cells. This interaction is mediated by the amino-terminal domain of HRG and results in enhanced phagocytosis of the necrotic cells by a monocytic cell line. In contrast, it was found that HRG binds poorly to and does not opsonize early stage apoptotic cells. Thus, HRG has the unique property of selectively recognizing necrotic cells and may play an important physiological role in vivo by facilitating the uptake and clearance of necrotic, but not apoptotic, cells by phagocytes.  相似文献   

5.
Due to loss of cell membrane integrity, necrotic cells passively release several cytosolic factors that can activate antigen presenting cells and other immune cells. In contrast, cells dying by apoptosis do not induce an inflammatory response. Here we show that necrotic cell death induced by several stimuli, such as TNF, anti-Fas or dsRNA, coincides with NF-kappaB-and p38MAPK-mediated upregulation and secretion of the pro-inflammatory cytokine IL-6. This event is greatly reduced or absent in conditions of apoptotic cell death induced by the same stimuli. This demonstrates that besides the capacity of necrotic cells to induce an inflammatory response due to leakage of cellular contents, necrotic dying cells themselves are involved in the expression and secretion of inflammatory cytokines. Moreover, inhibition of NF-kappaB and p38MAPK activation does not affect necrotic cell death in all conditions tested. This suggests that the activation of inflammatory pathways is distinct from the activation of necrotic cell death sensu strictu.  相似文献   

6.
In pathological situations, different modes of cell death are observed, and information on the role and uptake of nonapoptotic corpses is scarce. Here, we modeled two distinct forms of death in human Jurkat T cells treated with staurosporine: classical apoptosis under normal culture conditions and programmed death with necrotic morphology under ATP-depleting conditions (necPCD). When offered to phagocytes, both types of cell corpses (but not heat-killed unscheduled necrotic cells) reduced the release of the proinflammatory cytokine TNF from the macrophages. The necPCD cells were efficiently engulfed by macrophages and microglia, and from mixtures of necPCD and apoptotic cells macrophages preferentially engulfed the necrotic cells. Using a newly developed assay, we demonstrated that phosphatidylserine is translocated to the surface of such necrotic cells. We demonstrate that this can occur independently of calcium signals, and that surface phosphatidylserine is essential for the uptake of necrotic cells by both human macrophages and murine microglia.  相似文献   

7.
Most efforts thus far have been devoted to develop apoptosis inducers for cancer treatment. However, apoptotic pathway deficiencies are a hallmark of cancer cells. We propose that one way to bypass defective apoptotic pathways in cancer cells is to induce necrotic cell death. Here we show that selective induction of necrotic cell death can be achieved by activation of the DNA damage response pathways. While β-lapachone induces apoptosis through E2F1 checkpoint pathways, necrotic cell death can be selectively induced by β-lapachone in a variety of cancer cells. We found that β-lapachone, unlike DNA damaging chemotherapeutic agents, transiently activates PARP1, a main regulator of the DNA damage response pathway, both in vitro and in vivo. This occurs within minutes of exposure to β-lapachone, resulting in selective necrotic cell death. Inhibition of PAR blocked β-lapachone-induced necrosis. Furthermore, necrotic cell death induced by β-lapachone was significantly reduced in PARP1 knockout cell lines. Our data suggest that selective necrotic cell death can be induced through activation of DNA damage response pathways, supporting the idea of selective necrotic cell death as a therapeutic strategy  相似文献   

8.
The rules that govern the engagement of antitumor immunity are not yet fully understood. Ags expressed by tumor cells are prone to induce T cell tolerance unless the innate immune system is activated. It is unclear to what extent tumors engage this second signal link by the innate immune system. Apoptotic and necrotic (tumor) cells are readily recognized and phagocytosed by the cells of the innate immune system. It is unknown how this affects the tumor's immunogenicity. Using a murine melanoma (B16m) and lymphoma (L5178Y-R) model, we studied the clonal sizes and cytokine signatures of the T cells induced by these tumors in syngeneic mice when injected as live, apoptotic, and necrotic cells. Both live tumors induced a type 2 CD4 cell response characterized by the prevalent production of IL-2, IL-4, and IL-5 over IFN-gamma. Live, apoptotic, and necrotic cells induced CD4 (but no CD8) T cells of comparable frequencies and cytokine profiles. Therefore, live tumors engaged the second signal link, and apoptotic or necrotic tumor cell death did not change the magnitude or quality of the antitumor response. A subclone of L5178Y-R, L5178Y-S cells, were found to induce a high-frequency type 1 response by CD4 and CD8 cells that conveyed immune protection. The data suggest that the immunogenicity of tumors, and their characteristics to induce type 1 or type 2, CD4 or CD8 cell immunity is not primarily governed by signals associated with apoptotic or necrotic cell death, but is an intrinsic feature of the tumor itself.  相似文献   

9.
Cells from the small cell population of viable cells in the large necrotic centre of murine M8013 tumours were investigated with respect to their cell kinetics. Flow cytometry (FCM) of this part of subcutaneously transplanted tumours revealed the presence of tumour cells with G1, S and G2 + M phase DNA-contents. These severely hypoxic cells could have stopped cell cycle progression due to the nutritional deprivation, irrespective of their position within the cell cycle. Labelling methods, used to disclose the cell kinetics of this cell population, are hampered by the absence of a transport system in these large necrotic areas. Therefore, FCM was used to monitor radiation-induced changes in the cell cycle distribution. From this investigation it was concluded that hypoxic cells in the necrotic centre of the M8013 tumour progress through the cell cycle. As well as a cell population with a cell cycle time (Tc) of approximately 84 hr, a subpopulation with a Tc of approximately 21 hr occurred.  相似文献   

10.
A major component of Alzheimer's disease plaque amyloid β protein (βAP) showed the cytolytic activity to rat pheochromocytoma PC12 cells. Nuclear morphological study revealed that βAP-induced cytolytic activity is due to necrotic cell death, rather than apoptotic cell death. To examine the molecular machinery of βAP-induced necrotic cell death in detail, I investigated the direct involvement of caspase. When nerve growth factor-treated and -untreated PC12 cells were incubated with the synthesized tetrapeptide inhibitors of caspase, YVAD-CHO (Ac-Tyr-Val-Ala-Asp-CHO) or DEVD-CHO (Ac-Asp-Glu-Val-Asp-CHO), βAP-induced necrotic cell death was prevented. In addition, the interleukin-1β converting enzyme (ICE) subfamily activation preceded CPP32 subfamily activation during βAP-induced necrotic cell death. On the basis of these findings, I suggest that βAP induces necrotic cell death mediated by the ICE cascade and that the ICE cascade may possibly be involved in Alzheimer's disease.  相似文献   

11.
The immune system has evolved mechanisms to sense not only microbes, but also necrotic cells. The pattern-recognition receptors in macrophages/dendritic cells that stimulate the acquired immune system are closely associated with danger signaling. In this study monoclonal antibodies (mAbs) that specifically interact with necrotic cells were developed. One IgG1 and two IgM mAbs were established, and they recognized a 80 kDa protein expressed in necrotic, but not live or apoptotic, cells. These mAbs, which serve as a probe for necrosis, facilitate analyses of the role of the immune complex that consists of necrotic cells and Ab and contributes to the formation of the inflammatory milieu induced by necrotic cell death.  相似文献   

12.
The present study characterized two different internalization mechanisms used by macrophages to engulf apoptotic and necrotic cells. Our in vitro phagocytosis assay used a mouse macrophage cell line, and murine L929sAhFas cells that are induced to die in a necrotic way by TNFR1 and heat shock or in an apoptotic way by Fas stimulation. Scanning electron microscopy (SEM) revealed that apoptotic bodies were taken up by macrophages with formation of tight fitting phagosomes, similar to the 'zipper'-like mechanism of phagocytosis, whereas necrotic cells were internalized by a macropinocytotic mechanism involving formation of multiple ruffles directed towards necrotic debris. Two macropinocytosis markers (Lucifer Yellow (LY) and horseradish peroxidase (HRP)) were excluded from the phagosomes containing apoptotic bodies, but they were present inside the macropinosomes containing necrotic material. Wortmannin (phosphatidylinositol 3'-kinase (PI3K) inhibitor) reduced the uptake of apoptotic cells, but the engulfment of necrotic cells remained unaffected. Our data demonstrate that apoptotic and necrotic cells are internalized differently by macrophages.  相似文献   

13.
Abstract. Cells from the small cell population of viable cells in the large necrotic centre of murine M8013 tumours were investigated with respect to their cell kinetics. Flow cytometry (FCM) of this part of subcutaneously transplanted tumours revealed the presence of tumour cells with G1, S and G2 + M phase DNA-contents. These severely hypoxic cells could have stopped cell cycle progression due to the nutritional deprivation, irrespective of their position within the cell cycle.
Labelling methods, used to disclose the cell kinetics of this cell population, are hampered by the absence of a transport system in these large necrotic areas. Therefore, FCM was used to monitor radiation-induced changes in the cell cycle distribution. From this investigation it was concluded that hypoxic cells in the necrotic centre of the M8013 tumour progress through the cell cycle. As well as a cell population with a cell cycle time (Tc) of approximately 84 hr, a subpopulation with a Tc of approximately 21 hr occurred.  相似文献   

14.
In Bordetella bronchiseptica, the functional type III secretion system (TTSS) is required for the induction of necrotic cell death in infected mammalian cells. To identify the factor(s) involved in necrotic cell death, type III-secreted proteins from B. bronchiseptica were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization tandem mass spectrometry. We identified a 69-kDa secreted protein designated BopC. The gene encoding BopC is located outside of the TTSS locus and is also highly conserved in both Bordetella parapertussis and Bordetella pertussis. The results of a lactate dehydrogenase release assay and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay demonstrated that BopC is required for necrotic cell death. It has been reported that tyrosine-phosphorylated proteins (PY) of host cells are dephosphorylated during B. bronchiseptica infection in a TTSS-dependent manner. We found that BopC is also involved in PY dephosphorylation in infected host cells. It appears that the necrotic cell death triggered by BopC occurs prior to the PY reduction in host cells, because Bordetella-induced cell death was not affected even in the presence of a dephosphorylation inhibitor. Furthermore, a translocation assay showed that the signal sequence for both secretion into culture supernatant and translocation into the host cell is located in 48 amino acid residues of the BopC N terminus. This report reveals for the first time that a novel type III effector, BopC, is required for the induction of necrotic cell death during Bordetella infection.  相似文献   

15.
Necrotic death pathway in Fas receptor signaling   总被引:12,自引:0,他引:12  
A caspase 8-deficient subline (JB6) of human Jurkat cells can be killed by the oligomerization of Fas-associated protein with death domain (FADD). This cell death process is not accompanied by caspase activation, but by necrotic morphological changes. Here, we show that the death effector domain of FADD is responsible for the FADD-mediated necrotic pathway. This process was accompanied by a loss of mitochondrial transmembrane potential (DeltaPsim), but not by the release of cytochrome c from mitochondria. Pyrrolidine dithiocarbamate, a metal chelator and antioxidant, efficiently inhibited the FADD-induced reduction of DeltaPsim and necrotic cell death. When human Jurkat, or its transformants, expressing mouse Fas were treated with Fas ligand or anti-mouse Fas antibodies, the cells died, showing characteristics of apoptosis. A broad caspase inhibitor (z-VAD-fmk) blocked the apoptotic morphological changes and the release of cytochrome c. However, the cells still died, and this cell death process was accompanied by a strong reduction in DeltaPsim, as well as necrotic morphological changes. The presence of z-VAD-fmk and pyrrolidine dithiocarbamate together blocked cell death, suggesting that both apoptotic and necrotic pathways can be activated through the Fas death receptor.  相似文献   

16.
We recently reported that necrotic renal proximal tubular cells (RPTC) can induce the death of renal interstitial fibroblasts. Since autophagy plays either cytoprotective or cytodestructive roles depending on the experimental condition, the present study was carried out to investigate whether necrotic RPTC would induce autophagy of renal interstitial fibroblasts and, if so, whether autophagy would contribute to cell death or exert a protective effect. Exposure of necrotic RPTC supernatant (RPTC-Sup) induced autophagy in renal interstitial fibroblast cells (NRK-49F) in a time- and dose-dependent manner, and its induction was earlier than caspase-3 activation. Inhibition of autophagy with 3-methyladenine (3-MA) or knockdown of Beclin-1, a molecule involved in the initiation of autophagosome formation, with small interference RNA (siRNA) significantly enhanced necrotic RPTC-Sup-induced cell death. Necrotic RPTC-Sup induced phosphorylation of extracellular signal-regulated kinases (ERK1/2), p38, c-Jun NH(2)-terminal kinases (JNKs), and AKT. Treatment with an ERK1/2 pathway inhibitor, but not with specific inhibitors for p38, JNKs, or AKT pathways, blocked NRK-49F autophagy and cell death upon exposure to necrotic RPTC-Sup. Furthermore, knockdown of MEK1 with siRNA also reduced autophagy along with cell death in NRK-49F exposed to necrotic RPTC-Sup. In contrast, overexpression of MEK1/2 increased RPTC-Sup-induced fibroblast cell death without enhancing autophagy. Collectively, this study demonstrates that necrotic RPTC induce both autophagy and cell death and that autophagy plays a cytoprotective or prosurvival role in renal fibroblasts. Furthermore, necrotic RPTC-induced autophagy and cell death in renal fibroblasts is mediated by the activation of the MEK1-ERK1/2 signaling pathway.  相似文献   

17.
The distinction between physiological (apoptotic) and pathological (necrotic) cell deaths reflects mechanistic differences in cellular disintegration and is of functional significance with respect to the outcomes that are triggered by the cell corpses. Mechanistically, apoptotic cells die via an active and ordered pathway; necrotic deaths, conversely, are chaotic and passive. Macrophages and other phagocytic cells recognize and engulf these dead cells. This clearance is believed to reveal an innate immunity, associated with inflammation in cases of pathological but not physiological cell deaths. Using objective and quantitative measures to assess these processes, we find that macrophages bind and engulf native apoptotic and necrotic cells to similar extents and with similar kinetics. However, recognition of these two classes of dying cells occurs via distinct and noncompeting mechanisms. Phosphatidylserine, which is externalized on both apoptotic and necrotic cells, is not a specific ligand for the recognition of either one. The distinct modes of recognition for these different corpses are linked to opposing responses from engulfing macrophages. Necrotic cells, when recognized, enhance proinflammatory responses of activated macrophages, although they are not sufficient to trigger macrophage activation. In marked contrast, apoptotic cells profoundly inhibit phlogistic macrophage responses; this represents a cell-associated, dominant-acting anti-inflammatory signaling activity acquired posttranslationally during the process of physiological cell death.  相似文献   

18.
CD95 (Fas/Apo-1) triggers apoptotic cell death via a caspase-dependent pathway. Inhibition of caspase activation blocks proapoptotic signaling and thus, prevents execution of apoptosis. Besides induction of apoptotic cell death, CD95 has been reported to trigger necrotic cell death in susceptible cells. In this study, we investigated the interplay between apoptotic and necrotic cell death signaling in T cells. Using the agonistic CD95 antibody, 7C11, we found that caspase inhibition mediated by the pancaspase inhibitor, zVAD-fmk, prevented CD95-triggered cell death in Jurkat T cells but not in A3.01 T cells, although typical hallmarks of apoptosis, such as DNA fragmentation or caspase activation were blocked. Moreover, the caspase-independent cell death in A3.01 cells exhibited typical signs of necrosis as detected by a rapid loss of cell membrane integrity and could be prevented by treatment with the radical scavenger butylated hydroxyanisole (BHA). Similar to CD95-induced cell death, apoptosis triggered by the DNA topoisomerase inhibitors, camptothecin or etoposide was shifted to necrosis when capsase activation was inhibited. In contrast to this, ZVAD was fully protective when apoptosis was triggered by the serpase inhibitor, Nalpha-tosyl-phenyl-chloromethyl ketone (TPCK). TPCK was not protective when administered to anti-CD95/ZVAD-treated A3.01 cells, indicating that TPCK does not possess anti-necrotic activity but fails to activate the necrotic death pathway. Our findings show (a) that caspase inhibition does not always protect apoptotic T cells from dying but merely activates a caspase-independent mode of cell death that results in necrosis and (b) that the caspase-inhibitor-induced shift from apoptotic to necrotic cell death is dependent on the cell type and the proapoptotic stimulus.  相似文献   

19.
During apoptosis, cells acquire new activities that enable them to modulate the fate and function of interacting phagocytes, particularly macrophages (mϕ). Although the best known of these activities is anti-inflammatory, apoptotic targets also influence mϕ survival and proliferation by modulating proximal signaling events, such as MAPK modules and Akt. We asked whether modulation of these same signaling events extends to epithelial cells, a minimally phagocytic cell type. We used BU.MPT cells, a mouse kidney epithelial cell line, as our primary model, but we also evaluated several epithelial cell lines of distinct tissue origins. Like mϕ, mouse kidney epithelial cells recognized apoptotic and necrotic targets through distinct non-competing receptors, albeit with lower binding capacity and markedly reduced phagocytosis. Also, modulation of inflammatory activity and MAPK-dependent signaling by apoptotic and necrotic targets was indistinguishable in kidney epithelial cells and mϕ. In contrast, modulation of Akt-dependent signaling differed dramatically between kidney epithelial cells and mϕ. In kidney epithelial cells, modulation of Akt was linked to target cell recognition, independently of phagocytosis, whereas in mϕ, modulation was linked to phagocytosis. Moreover, recognition of apoptotic and necrotic targets by kidney epithelial cells elicited opposite responses; apoptotic targets inhibited whereas necrotic targets stimulated Akt activity. These data confirm that nonprofessional phagocytes recognize and respond to dying cells, albeit in a manner partially distinct from mϕ. By acting as sentinels of environmental change, apoptotic and necrotic targets may permit neighboring viable cells, especially non-migratory epithelial cells, to monitor and adapt to local stresses.  相似文献   

20.
Morgan MJ  Kim YS  Liu ZG 《Cell research》2008,18(3):343-349
Death receptors, including the TNF receptor-1 (TNF-RI), have been shown to be able to initiate caspase-independent cell death. This form of "necrotic cell death" appears to be dependent on the generation of reactive oxygen species. Recent data have indicated that superoxide generation is dependent on the activation of NADPH oxidases, which form a complex with the adaptor molecules RIP1 and TRADD. The mechanism of superoxide generation further establishes RIP1 as the central molecule in ROS production and cell death initiated by TNFa and other death receptors. A role for the sustained JNK activation in necrotic cell death is also suggested. The sensitization of virus-infected cells to TNFα indicates that necrotic cell death may represent an alternative cell death pathway for clearance of infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号