首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acrolein, a cell metabolic product and main component of cigarette smoke, reacts with DNA generating α‐OH‐PdG lesions, which have the ability to pair with dATP during replication thereby causing G to T transversions. We describe the solution structure of an 11‐mer DNA duplex containing the mutagenic α‐OH‐PdG·dA base pair intermediate, as determined by solution nuclear magnetic resonance (NMR) spectroscopy and retrained molecular dynamics (MD) simulations. The NMR data support a mostly regular right‐handed helix that is only perturbed at its center by the presence of the lesion. Undamaged residues of the duplex are in anti orientation, forming standard Watson‐Crick base pairs alignments. Duplication of proton signals at and near the damaged base pair reveals the presence of two enantiomeric duplexes, thus establishing the exocyclic nature of the lesion. The α‐OH‐PdG adduct assumes a syn conformation pairing to its partner dA base that is protonated at pH 6.6. The three‐dimensional structure obtained by restrained molecular dynamics simulations show hydrogen bond interactions that stabilize α‐OH‐PdG in a syn conformation and across the lesion containing base pair. We discuss the implications of the structures for the mutagenic bypass of acrolein lesions. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 391–401, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
DNA has proved to be a successful material for creation of nanoscale structures because of its inherent programmability and predictable structural features. However, the assembly of periodic three-dimensional (3D) DNA crystals is hampered by the junctions needed to connect the inherently linear Watson–Crick duplexes. Here, we examine how predictable noncanonical base pairing motifs can be used in conjunction with Watson–Crick duplexes to assemble macroscopic 3D crystals with useful nanoscale features. Parallel-stranded homopurine 5′-GGA base pairs serve as a junction region in a continuously base paired 13-mer DNA crystal (Paukstelis et al., 2004). This motif is predictable and has been used in different sequence contexts to rationally design DNA crystals with different lattice dimensions. These designed crystals have been utilized as macromolecular sieves for capturing or excluding proteins (Paukstelis, 2006). Further, we have demonstrated that a protein enzyme encapsulated in the crystal solvent channels is capable of performing catalysis. Enzyme-infused DNA crystals are capable of multiple cycles of catalysis following removal of substrate and products, and may offer potential new routes for enzyme replacement therapies or the creation of new biodegradable solid-state catalysts and sensors. A structurally similar homoparallel region, 5′-CGAA, has also been used to generate crystals that are capable of making concerted in crystallo structural transitions in response to pH perturbations (Muser & Paukstelis, 2012). These studies highlight potential uses of DNA crystals as stimuli-responsive biomaterials. Despite these successes, the ability to use noncanonical DNA motifs in crystal design is limited by both the number of available noncanonical DNA structures, and our understanding of how these structures self-assemble. To address this we have initiated a high-throughput crystallization screen of short DNA oligonucleotides to identify new noncanonical base pairing motifs and to address the broad question: How structurally diverse is DNA?  相似文献   

3.
Recent structures of DNA polymerase complexes with dGMPCPP/dT and dCTP/dA mispairs at the insertion site have shown that they adopt Watson‐Crick geometry in the presence of Mn2+ indicating that the tautomeric or ionization state of the base has changed. To see whether the tautomeric or ionization state of base‐pair could be affected by its microenvironment, we determined 10 structures of an RB69 DNA polymerase quadruple mutant with dG/dT or dT/dG mispairs at position n‐1 to n‐5 of the Primer/Template duplex. Different shapes of the mispairs, including Watson‐Crick geometry, have been observed, strongly suggesting that the local environment of base‐pairs plays an important role in their tautomeric or ionization states.  相似文献   

4.
In this work, we explore the influence of different solvents and ions on the crystallization behavior of an all‐AT dodecamer d(AATAAATTTATT)2 In all cases, the oligonucleotides are found as continuous columns of stacked duplexes. The spatial organization of such columns is variable; consequently we have obtained seven different crystal forms. The duplexes can be made to crystallize in either parallel or crossed columns. Such versatility in the formation of a variety of crystal forms is characteristic for this sequence. It had not been previously reported for any other sequence. In all cases, the oligonucleotide duplexes have been found to crystallize in the B form. The crystallization conditions determine the organization of the crystal, although no clear local interactions have been detected. Mg2+ and Ni2+ can be used in order to obtain compact crossed structures. DNA–DNA interactions in the crystals of our all‐AT duplexes present crossovers which are different from those previously reported for mixed sequence oligonucleotides. Our results demonstrate that changes in the ionic atmosphere and the crystallization solvent have a strong influence on the DNA–DNA interactions. Similar ionic changes will certainly influence the biological activity of DNA. Modulation of the crystal structure by ions should also be explored in DNA crystal engineering. Liquid crystals with a peculiar macroscopic shape have also been observed. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 123–133, 2015.  相似文献   

5.
Widely dispersed in genomic DNA, the tandem C‐rich repetitive stretches may fold below physiological pH, into i‐motif structures, stabilized by C·C+ pairing. Herein, structural status of a 9‐mer stretch d(CCCTAACCC), [the truncated double repeat of human telomeric sequence], and its extended version, comprising of additional ? TAA segment at the 3′‐end, representing the complete double repeat d(CCCTAACCCTAA), has been investigated. The pH dependent monophasic UV‐melting, Gel and CD data suggested that while the truncated version adopts a bimolecular i‐motif structure, its complete double repeat (12‐mer) sequence exists in two (bimolecular and tetramolecular) forms. A model is proposed for the tetramolecular i‐motif with conventional C · C+ base pairs, additionally stabilized by asymmetric A · A base pairs at the ?3′ TAA flanking ends and Watson–Crick A · T hydrogen bonding between intervening bases on antiparallel strands. Expanding the known topologies of DNA i‐motifs, such atypical geometries of i‐motifs may have implications in their recognition by proteins. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 150–160, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na+‐ions (dDMPs) have demonstrated that the main characteristics of Watson‐Crick (WC) right‐handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar‐phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar‐phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr‐Pur from Pur‐Pyr, and Pur‐Pyr from Pyr‐Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar‐phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z‐family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 640–650, 2014.  相似文献   

7.
Stacking interaction between the aromatic heterocyclic bases plays an important role in the double helical structures of nucleic acids. Considering the base as rigid body, there are total of 18 degrees of freedom of a dinucleotide step. Some of these parameters show sequence preferences, indicating that the detailed atomic interactions are important in the stacking. Large variants of non‐canonical base pairs have been seen in the crystallographic structures of RNA. However, their stacking preferences are not thoroughly deciphered yet from experimental results. The current theoretical approaches use either the rigid body degrees of freedom where the atomic information are lost or computationally expensive all atom simulations. We have used a hybrid simulation approach incorporating Monte‐Carlo Metropolis sampling in the hyperspace of 18 stacking parameters where the interaction energies using AMBER‐parm99bsc0 and CHARMM‐36 force‐fields were calculated from atomic positions. We have also performed stacking energy calculations for structures from Monte‐Carlo ensemble by Dispersion corrected density functional theory. The available experimental data with Watson–Crick base pairs are compared to establish the validity of the method. Stacking interaction involving A:U and G:C base pairs with non‐canonical G:U base pairs also were calculated and showed that these structures were also sequence dependent. This approach could be useful to generate multiscale modeling of nucleic acids in terms of coarse‐grained parameters where the atomic interactions are preserved. This method would also be useful to predict structure and dynamics of different base pair steps containing non Watson–Crick base pairs, as found often in the non‐coding RNA structures. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 212–226, 2016.  相似文献   

8.
In this work, we report thermodynamic, kinetic, and microrheological studies relative to the formation of PNA‐ and PNA/DNA‐based noncovalent polymeric systems, useful tools for biotechnological and bioengineering applications. We realized two kinds of systems: a PNA‐based system formed by a self‐assembling PNA tridendron, and a PNA/DNA hybrid system formed by a PNA tridendron and a DNA linker. The formation of a three‐dimensional polymeric network, by means of specific Watson–Crick base pairing, was investigated by a detailed UV and CD spectroscopic study. Preliminary microrheology experiments were performed on both systems to evaluate their viscoelastic properties which resulted in agreement with the formation of soluble hyperbranched polymers that could be useful for drug/gene delivery, as well as for encapsulating organic pollutants of different shapes and sizes in environmental applications. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
We report here the crystal structure of the DNA hexamer duplex d(CGCGCA).d(TGCGCG) at 1.71 Å resolution. The crystals, in orthorhombic space group, were grown in the presence of cobalt hexammine, a known inducer of the left-handed Z form of DNA. The interaction of this ion with the DNA helix results in a change of the adenine base from the common amino tautomeric form to the imino tautomer. Consequently the A:T base pair is disrupted from the normal Watson–Crick base pairing to a ‘wobble’ like base pairing. This change is accommodated easily within the helix, and the helical parameters are those expected for Z-DNA. When the cobalt hexammine concentration is decreased slightly in the crystallization conditions, the duplex crystallizes in a different, hexagonal space group, with two hexamer duplexes in the asymmetric unit. One of these is situated on a crystallographic 6-fold screw axis, leading to disorder. The tautomeric shift is not observed in this space group. We show that the change in inter-helix interactions that lead to the two different space groups probably arise from the small decrease in ion concentration, and consequently disordered positions for the ion.  相似文献   

10.
11.
Guanine tetraplexes are a biologically relevant alternative of the Watson and Crick duplex of DNA. It is thought that potassium or other cations present in the cavity between consecutive guanine tetrads are an integral part of the tetraplexes. Here we show using CD spectroscopy that ethanol induces the guanine tetraplexes like or even better than potassium cations. We present examples of ethanol stabilizing guanine tetraplexes even in cases when potassium cations fail to do so. Hence, besides the A-form or Z-form, ethanol stabilizes another conformation of DNA, i.e., the guanine tetraplexes. We discuss the mechanism of the stabilization. Use of ethanol will permit studies of guanine tetraplexes that cannot be induced by potassium cations or other tetraplex-promoting agents. This work demonstrates that a still broader spectrum of nucleotide sequences can fold into guanine tetraplexes than has previously been thought. Aqueous ethanol may better simulate conditions existing in vivo than the aqueous solutions.  相似文献   

12.
Acrolein is an α,β‐unsaturated aldehyde that is a major environmental pollutant, as well as a product of cellular metabolism. DNA bases react with acrolein to form two regioisomeric exocyclic guanine adducts, namely γ‐hydroxy‐propanodeoxyguanosine (γ‐OH‐PdG) and its positional isomer α‐hydroxy‐propanodeoxyguanosine (α‐OH‐PdG). The γ‐OH‐PdG isomer adopts a ring‐opened conformation with minimal structural perturbation of the DNA host duplex. Conversely, the α‐OH‐PdG isomer assumes a ring‐closed conformation that significantly disrupts Watson‐Crick base‐pair alignments within the immediate vicinity of the damaged site. We have employed a combination of calorimetric and spectroscopic techniques to characterize the thermodynamic origins of these lesion‐induced structural alterations. Specifically, we have assessed the energetic impact of α‐OH‐PdG centered within an 11‐mer duplex by hybridizing the adduct‐containing oligonucleotide with its complementary strand harboring a central base N [where N = C or A], yielding a pair of duplexes containing the nascent lesion (α‐OH‐PdG·C) or mismatched adduct (α‐OH‐PdG·A), respectively. Our data reveal that the nascent lesion is highly destabilizing, whereas its mismatched counterpart partially ameliorates α‐OH‐PdG‐induced destabilization. Collectively, our data provide energetic characterizations of the driving forces that modulate error‐free versus error‐prone DNA translesion synthesis. The biological implications of our findings are discussed in terms of energetically probing acrolein‐mediated mutagenicity versus adduct‐induced genotoxicity. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 370–382, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
Emergence of thousands of crystal structures of noncoding RNA molecules indicates its structural and functional diversity. RNA function is based upon a large variety of structural elements which are specifically assembled in the folded molecules. Along with the canonical Watson‐Crick base pairs, different orientations of the bases to form hydrogen‐bonded non‐canonical base pairs have also been observed in the available RNA structures. Frequencies of occurrences of different non‐canonical base pairs in RNA indicate their important role to maintain overall structure and functions of RNA. There are several reports on geometry and energetic stabilities of these non‐canonical base pairs. However, their stacking geometry and stacking stability with the neighboring base pairs are not well studied. Among the different non‐canonical base pairs, the G:U wobble base pair (G:U W:WC) is most frequently observed in the RNA double helices. Using quantum chemical method and available experimental data set we have studied the stacking geometry of G:U W:WC base pair containing dinucleotide sequences in roll‐slide parameters hyperspace for different values of twist. This study indicates that the G:U W:WC base pair can stack well with the canonical base pairs giving rise to large interaction energy. The overall preferred stacking geometry in terms of roll, twist and slide for the eleven possible dinucleotide sequences is seen to be quite dependent on their sequences. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 328–338, 2015.  相似文献   

14.
yDNA is a base‐modified nucleic acid duplex containing size‐expanded nucleobases. Base‐modified nucleic acids could expand the genetic alphabet and thereby enhance the functional potential of DNA. Unrestrained 100 ns MD simulations were performed in explicit solvent on the yDNA NMR sequence [5′(yA T yA yA T yA T T yA T)2] and two modeled yDNA duplexes, [5′(yC yC G yC yC G G yC G G)2] and [(yT5′ G yT A yC yG C yA yG T3′)?(yA5′ C T C yG C G yT A yC A3′)]. The force field parameters for the yDNA bases were derived in consistent with the well‐established AMBER force field. Our results show that DNA backbone can withstand the stretched size of the bases retaining the Watson‐Crick base pairing in the duplexes. The duplexes retained their double helical structure throughout the simulations accommodating the strain due to expanded bases in the backbone torsion angles, sugar pucker and helical parameters. The effect of the benzo‐expansion is clearly reflected in the extended C1′‐C1′ distances and enlarged groove widths. The size expanded base modification leads to reduction in base pair twist resulting in larger overlapping area between the stacked bases, enhancing inter and intra strand stacking interactions in yDNA in comparison with BDNA. This geometry could favour enhanced interactions with the groove binders and DNA binding proteins., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 55–64, 2016  相似文献   

15.
DNA polymerases specifically insert the hydrophobic pyrene deoxynucleotide (P) opposite tetrahydrofuran (F), an stable abasic site analog, and DNA duplexes containing this non-hydrogen-bonded pair possess a high degree of thermodynamic stability. These observations support the hypothesis that steric complementarity and stacking interactions may be sufficient for maintaining stability of DNA structure and specificity of DNA replication, even in the absence of hydrogen bonds across the base pair. Here we report the NMR characterization and structure determination of two DNA molecules containing pyrene residues. The first is a 13mer duplex with a pyrene·tetrahydrofuran pair (P·F pair) at the ninth position and the second mimics a replication intermediate right after incorporation of a pyrene nucleoside opposite an abasic site. Our data indicate that both molecules adopt right-handed helical conformations with Watson– Crick alignments for all canonical base pairs. The pyrene ring stays inside the helix close to its baseless partner in both molecules. The single-stranded region of the replication intermediate folds back over the opposing strand, sheltering the hydrophobic pyrene moiety from water exposure. The results support the idea that the stability and replication of a P·F pair is due to its ability to mimic Watson–Crick structure.  相似文献   

16.
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5′-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.  相似文献   

17.
We report here the crystal structure of the partially self-complementary decameric sequence d(CGGCGGCCGC), which self assembles to form a four-way junction with sticky ends. Each junction binds to four others through Watson–Crick base pairing at the sticky ends to form a rhombic structure. The rhombuses bind to each other and form two dimensional tiles. The tiles stack to form the crystal. The crystal diffracted in the space group P1 to a resolution of 2.5 Å. The junction has the anti-parallel stacked-X conformation like other junction structures, though the formation of the rhombic net noticeably alters the details of the junction geometry.  相似文献   

18.
The titled complex, obtained by co-crystallization (EtOH/25 °C), is apparently the only known complex of the free bases. Its crystal structure, as determined by X-ray diffraction at both 90 K and 313 K, showed that one A–T pair involves a Hoogsteen interaction, and the other a Watson–Crick interaction but only with respect to the adenine unit. The absence of a clear-cut Watson–Crick base pair raises intriguing questions about the basis of the DNA double helix.  相似文献   

19.
《Biochemical education》1998,26(4):277-280
This tutorial briefly describes a new class of synthetic biopolymer, which is referred to as peptide nucleic acid (PNA). In PNA, individual nucleobases are linked to an achiral neutral peptide backbone. PNA exhibits the hybridization characteristic (e.g., Watson—Crick duplex formation) of DNA. The achiral peptide backbone provides similar interbase distances as natural DNA, and adequate flexibility to permit base pair interactions with complementary RNA or DNA strands. Several potential applications of PNA oligomers in biotechnology are suggested. These include the use of PNAs as a probe for specific recognition of a DNA or RNA sequence selective, purification of nucleic acids via designed high affinity binding to PNA, screening for DNA mutations, and as possible therapeutic agents.  相似文献   

20.
Purine-rich (GA)- and (GT)-containing oligophosphorothioates were investigated for their triplex-forming potential on a 23 bp DNA duplex target. In our system, GA-containing oligophosphorothioates (23mer GA-PS) were capable of triplex formation with binding affinities lower than (GA)-containing oligophosphodiesters (23mer GA-PO). The orientation of the third strand 23mers GA-PS and GA-PO was antiparallel to the purine strand of the duplex DNA target. In contrast, (GT)-containing oligophosphorothioates (23mer GT-PS) did not support triplex formation in either orientation, whereas the 23mer GT-PO oligophosphodiester demonstrated triplex formation in the antiparallel orientation. GA-PS oligonucleotides, in contrast to GT-PS oligonucleotides, were capable of self-association, but these self-associated structures exhibited lower stabilities than those formed with GA-PO oligonucleotides, suggesting that homoduplex formation (previously described for the 23mer GA-PO sequence by Noonberg et al.) could not fully account for the decrease in triplex stability when phosphorothioate linkages were used. The 23mer GA-PS oligonucleotide was covalently linked via its 5'-end to an acridine derivative (23mer Acr-GA-PS). In the presence of potassium cations, this conjugate demonstrated triplex formation with higher binding affinity than the unmodified 23mer GA-PS oligonucleotide and even than the 23mer GA-PO oligonucleotide. A (GA)-containing oligophosphodiester with two phosphorothioate linkages at both the 5'- and 3'-ends exhibited similar binding affinity to duplex DNA compared with the unmodified GA-PO oligophosphodiester. This capped oligonucleotide was more resistant to nucleases than the GA-PO oligomer and thus represents a good alternative for ex vivo applications of (GA)-containing, triplex-forming oligonucleotides, allowing a higher binding affinity for its duplex target without rapid cellular degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号