首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Status of activation of circulating vaccine-elicited CD8+ T cells   总被引:1,自引:0,他引:1  
Selective blunting of the status of activation of circulating tumor-specific T cells was invoked to explain their paradoxical coexistence with unhampered tumor growth. By analogy, lack of tumor regression in the face of observable melanoma vaccine-induced T cell responses might be attributed to their status of activation. We enumerated with HLA-A*0201/peptide tetramers (tHLA) vaccine-elicited T cell precursor frequency directly in PBMC of patients with melanoma undergoing vaccination with the HLA-A*0201-associated gp100:209-217(210 M) epitope (g209-2 M). Furthermore, we tested by intracellular (IC)-FACS analysis and quantitative real-time PCR (qRT-PCR) the ability of postvaccination PBMC to produce cytokine in response to challenge with vaccine-related epitopes or vaccine-matched (HLA-A*0201) melanoma cells. Vaccine-induced enhancement of T cell precursor frequency could be detected with tHLA in PBMC from six of eight patients studied at frequencies ranging between 0.3 and 2.3% of the total CD8+ population. Stimulation with vaccine-related epitopes induced IFN-gamma expression detectable by IC-FACS or qRT-PCR, respectively, in five and six of these patients. Furthermore, down-regulation of tHLA staining was noted upon cognate stimulation that could be utilized as an additional marker of T cell responsiveness. Finally, we observed in six patients an enhancement of reactivity against vaccine-matched tumor targets that was partly independent of documented vaccine-specific immune responses. A strong correlation was noted between tHLA staining of postvaccination PBMC and IFN-gamma expression by the same samples upon vaccine-relevant stimulation and assessed either by IC-FACS or qRT-PCR. Thus, blunting of the status of T cell activation on itself cannot easily explain the lack of clinical responses observed with vaccination.  相似文献   

2.
Cancer vaccines can induce the in vivo generation of tumor Ag-specific T cells in patients with metastatic melanoma yet seldom elicit objective clinical responses. Alternatively, adoptive transfer of autologous tumor-infiltrating lymphocytes (TIL) can mediate tumor regression in 50% of lymphodepleted patients, but are logistically and technically difficult to generate. In this study, we evaluated the capability of vaccine-induced PBMC to mediate tumor regression after transfer to patients receiving the same chemotherapy-induced lymphodepletion used for TIL transfer therapy. Autologous PBMC from nine gp100-vaccinated patients with metastatic melanoma were stimulated ex vivo with the gp100:209-217(210M) peptide and transferred in combination with high-dose IL-2 and cancer vaccine. Transferred PBMC contained highly avid, gp100:209-217 peptide-reactive CD8(+) T cells. One week after transfer, lymphocyte counts peaked (median of 14.3 x 10(3) cells//microl; range of 0.9-59.7 x 10(3) cells/microl), with 56% of patients experiencing a lymphocytosis. gp100:209-217 peptide-specific CD8(+) T cells persisted at high levels in the blood of all patients and demonstrated significant tumor-specific IFN-gamma secretion in vitro. Melanocyte-directed autoimmunity was noted in two patients; however, no patient experienced an objective clinical response. These studies demonstrate the feasibility and safety of using vaccine-induced PBMC for cell transfer, but suggests that they are not as effective as TIL in adoptive immunotherapy even when transferred into lymphodepleted hosts.  相似文献   

3.
Lymphocytes expanded from excised specimens can be used to characterize intratumoral T cell responses. These analyses, however, are limited to one time point in the natural history of the removed tumor. The expansion of autologous tumor cells and tumor-infiltrating lymphocytes (TIL) from fine needle aspirates (FNA) of tumors potentially allows a dynamic evaluation of T cell responses within the same lesion at moments relevant to the disease course or response to therapy. Fourteen TIL cultures and 8 tumor cell lines were generated from 18 FNA (12 patients). Five of six TIL that could be tested against autologous tumor demonstrated specific reactivity. Two additional TIL for which no autologous tumor was available demonstrated recognition of HLA-matched melanoma cell lines. Serial FNA of the same lesions were performed in five HLA-A*0201 patients vaccinated with the emulsified melanoma Ag (MA) epitopes: MART-1:27-35; tyrosinase:368-376(370D); gp100:280-288(288V); and gp100:209-217 (210M). FNA material was separately cultured for a short time in IL-2 (300 IU/ml) after stimulation with irradiated autologous PBMC pulsed with each peptide or FluM1:58-66 (1 micromol/ml). No peptide-specific TIL could be expanded from prevaccination FNA. However, after vaccination, TIL specific for gp100:280(g280), gp100:209 (g209), and MART-1:27-35 (MART-1)-related epitopes were identified in three, three, and two patients, respectively. No Flu reactivity could be elicited in TIL, whereas it was consistently present in parallel PBMC cultures. This excluded PBMC contamination of the FNA material. This analysis suggests the feasibility of TIL expansion from minimal FNA material and localization of vaccine-specific T cells at the tumor site.  相似文献   

4.
Anchor residue-modified peptides derived from tumor-associated Ag have demonstrated success in engendering immune responses in clinical studies. However, tumor regression does not always correlate with immune responses. One hypothesis to explain this is that CTL resulting from such immunization approaches are variable in antitumor potency. In the present study, we evaluated this hypothesis by characterizing the activity of tumor-associated Ag-specific CTL. We chose an anchor residue-modified peptide from gp100, G209-2M, and used peptide-pulsed dendritic cells to generate CTL from PBMC of HLA-A2(+) normal donors. The specificities and avidities of the resulting CTL were evaluated. The results demonstrate that CTL generated by G209-2M can be classified into three categories: G209-2M-specific CTL which are cytotoxic only to G209-2M-pulsed targets; peptide-specific CTL which recognize both G209 and G209-2M peptides but not melanomas; and melanoma-reactive CTL which recognize peptide-pulsed targets as well as HLA-A2(+)gp100(+) melanomas. CTL that kill only peptide-pulsed targets require a higher peptide concentration to mediate target lysis, whereas CTL that lyse melanomas need a lower peptide concentration. Increasing peptide density on melanomas by loading exogenous G209 peptide enhances their sensitivity to peptide-specific CTL. High avidity CTL clones also demonstrate potent antimelanoma activity in melanoma model in nude mice. Injection of G209 peptide around transplanted tumors significantly enhances the antitumor activity of low avidity CTL. These results suggest that peptide stimulation causes expansion of T cell populations with a range of avidities. Successful immunotherapy may require selective expansion of the higher-avidity CTL and intratumor injection of the peptide may enhance the effect of peptide vaccines.  相似文献   

5.
In this study, we report the adoptive transfer of highly tumor-reactive Melan-A-specific T cell clones to patients with metastatic melanoma, and the follow-up of these injected cells. These clones were generated from HLA-A*0201 patients by in vitro stimulations of total PBMC with the HLA-A*0201-binding Melan-A peptide analog ELAGIGILTV. Ten stage IV melanoma patients were treated by infusion of these CTL clones with IL-2 and IFN-alpha. The generated T cell clones, of effector/memory phenotype were selected on the basis of their ability to produce IL-2 in response to HLA-A*0201 Melan-A-positive melanoma lines. Infused clones were detected, by quantitative PCR, in the blood of three patients for periods ranging from 7 to 60 days. Six patients showed regression of individual metastases or disease stabilization, and one patient experienced a complete response, but no correlation was found between the detection of the infused clones in PBMC or tumor samples and clinical responses. Nonetheless, frequencies of Melan-A/A2-specific lymphocytes, measured by tetramer labeling, increased after treatment in most patients. In one of these patients, who showed a complete response, this increase corresponded to the expansion of new clonotypes of higher avidity than those detected before treatment. Together, our results suggest that infused CTL clones may have initiated an antitumor response that may have resulted in the expansion of a Melan-A-specific CTL repertoire.  相似文献   

6.
BACKGROUND: Development of a practical and sensitive assay for evaluating immune responses against cancer Ag has been a challenge for immune monitoring of patients. We have established a reproducible method using peptide-pulsed K562-A*0201 cells as APC to expand Ag-specific T cells in vitro. This method may be applied for monitoring T-cell responses in cancer immunotherapy clinical trials. METHODS: Autologous PBMC from HLA-A*0201+ healthy donors and patients with melanoma were stimulated with peptide-pulsed K562-A*0201 cells under varying conditions. We investigated (1) different culture conditions, including the requirements for serum and cytokines for expansion of CD8+ T lymphocytes; (2) a range of peptide concentrations for Ag loading; (3) phenotypic characterization of responding T cells; and (4) APC:responder ratios and their effects on T-cell expansion. We validated these conditions by ELISPOT and intracellular cytokine staining (ICS) assays using peptides from influenza, Epslein-Barr Virus (EBV) and tyrosinase. RESULTS: Conditions for optimal T-cell expansion using K562-A*0201 APC included input of 2 x 10(6) PBMC, a 10 microg/mL peptide concentration to pulse K562-A*0201 cells, a 1:30 APC:responder T-cell ratio and culture in 10% autologous plasma supplemented with IL-2 and IL-15. In these conditions, Ag-specific T cells expanded >100-fold over a 10-day culture period (peak at day 12). DISCUSSION: This bulk culture method is simple and reliable for expanding human Ag-specific T cells using peptide-pulsed K562-A*0201 cells. This HLA-matched APC line can be adapted to other HLA haplotypes, and has advantages for monitoring clinical trials of immunotherapy with limited availability of autologous APC and PBMC from patients.  相似文献   

7.
Patients with acute Plasmodium falciparum malaria have defective cell-mediated immune responses to malaria-specific Ag (MA). This immunologic defect may partially explain the difficulty with which natural immunity to falciparum malaria develops and may have important implications for the efficacy of potential malaria vaccines in endemic areas. To investigate the basis of this immune defect, we have examined the capacity of PBMC from patients with acute falciparum malaria to produce IL-2 and to express I1-2R in response to Ag stimulation. The effect of exogenous IL-1 and IL-2 on lymphocyte proliferation was studied. Soluble IL-2R levels were measured in acute and convalescent sera. Our results showed that no detectable IL-2 was produced and no IL-2R were expressed by PBMC in response to MA during the acute infection. IL-2 production and IL-2R expression were also depressed when PBMC were exposed to streptococcal Ag. The specific immune defect was not reconstituted by the addition of graded doses of purified human IL-1 or IL-2 and could not be attributed to suppressor adherent cells. In contrast to the absence of IL-2 and cell-bound IL-2R, circulating soluble IL-2R was elevated in acute sera. These findings suggest that the lack of IL-2, through either a defect in its production or inhibition of its activity, may be the basis of the Ag-specific immune unresponsiveness in acute P. falciparum malaria.  相似文献   

8.
Patients with metastatic melanoma were immunized with an immunodominant peptide derived from the gp100 melanoma-melanocyte differentiation Ag that was modified to increase binding to HLA-A+0201. A total of 10 of 11 patients who received the g209-2M peptide alone developed precursors reactive with the native g209 peptide, compared with only 5 of 16 patients who received g209-2M peptide plus IL-2 (p2 = 0.005). Peptide reactivity closely correlated with the recognition of HLA-A+0201 melanoma cells (p < 0. 001). The decrease in immune reactivity when peptide was administered with IL-2 appeared specific for the immunizing peptide, since reactivity to an influenza peptide resulting from prior exposure was not affected. Preexisting antitumor precursors did not decrease when peptide plus IL-2 was administered. The administration of GM-CSF or IL-12 also resulted in a decrease in circulating precursors compared with the administration of peptide alone, though not as great a decrease as that seen with IL-2. Immunization with peptide plus IL-2 did, however, appear to have clinical impact since 6 of the 16 patients (38%) that received peptide plus IL-2 had objective cancer regressions. It thus appeared possible that immunization with peptide plus IL-2 resulted in sequestering or apoptotic destruction of newly activated immune cells at the tumor site. These represent the first detailed studies of the impact of immunization with tumor peptides in conjunction with a variety of cytokines in patients with metastatic cancer.  相似文献   

9.
Choosing a reliable source of tumor-specific T lymphocytes and an efficient method to isolate these cells still remains a critical issue in adoptive cellular therapy (ACT). In this study, we assessed the capacity of MHC/peptide based immunomagnetic sorting followed by polyclonal T cell expansion to derive pure polyclonal and tumor-reactive Melan-A specific T cell populations from melanoma patient’s PBMC and TIL. We first demonstrated that this approach was extremely efficient and reproducible. We then used this procedure to compare PBMC and TIL-derived cells from three melanoma patients in terms of avidity for Melan-A A27L analog, Melan-A26–35 and Melan-A27–35, tumor reactivity (lysis and cytokine production) and repertoire. Regardless of their origin, i.e., fresh PBMC, peptide stimulated PBMC or TIL, all sorted populations (from the three patients) were cytotoxic against HLA-A2+ melanoma cell lines expressing Melan-A. Although some variability in peptide avidity, lytic activity and cytokine production was observed between populations of different origins in a given patient, it differed from one patient to another and thus no correlation could be drawn between T cell source and reactivity. Analysis of Vβ usage within the sorted populations showed the recurrence of Vβ3 and Vβ14 subfamilies in the three patients but differences in the rest of the Melan-A repertoire. In addition, in two patients, we observed major repertoire differences between populations sorted from the three sources. We especially documented that in vitro peptide stimulation of PBMC, used to facilitate the sort by enriching in specific T lymphocytes, could significantly alter their repertoire and reactivity towards tumor cells. We conclude that PBMC which are easily obtained from all melanoma patients, can be as good a source as TIL to derive high amounts of tumor-reactive Melan-A specific T cells, with this selection/amplification procedure. However, the conditions of peptide stimulation should be improved to prevent a possible loss of reactive clonotypes. Nathalie Labarrière and Nadine Gervois have equally contributed to this work.  相似文献   

10.
Functional heterogeneity of vaccine-induced CD8(+) T cells   总被引:5,自引:0,他引:5  
The functional status of circulating vaccine-induced, tumor-specific T cells has been questioned to explain their paradoxical inability to inhibit tumor growth. We enumerated with HLA-A*0201/peptide tetramers (tHLA) vaccine-elicited CD8(+) T cell precursor frequency among PBMC in 13 patients with melanoma undergoing vaccination with the HLA-A*0201-associated gp100:209-217(210 M) epitope. T cell precursor frequency increased from undetectable to 12,400 +/- 3,600 x 10(6) CD8(+) T cells after vaccination and appeared heterogeneous according to previously described functional subtypes: CD45RA(+)CD27(+) (14 +/- 2.6% of tHLA-staining T cells), naive; CD45RA(-)CD27(+) (14 +/- 3.2%), memory; CD45RA(+)CD27(-) (43 +/- 6%), effector; and CD45RA(-)CD27(-) (30 +/- 4.1%), memory/effector. The majority of tHLA(+)CD8(+) T cells displayed an effector, CD27(-) phenotype (73%). However, few expressed perforin (17%). Epitope-specific in vitro stimulation (IVS) followed by 10-day expansion in IL-2 reversed this phenotype by increasing the number of perforin(+) (84 +/- 3.6%; by paired t test, p < 0.001) and CD27(+) (from 28 to 67%; by paired t test, p = 0.01) tHLA(+) T cells. This conversion probably represented a change in the functional status of tHLA(+) T cells rather than a preferential expansion of a CD27(+) (naive and/or memory) PBMC, because it was reproduced after IVS of a T cell clone bearing a classic effector phenotype (CD45RA(+)CD27(-)). These findings suggest that circulating vaccine-elicited T cells are not as functionally active as inferred by characterization of IVS-induced CTL. In addition, CD45RA/CD27 expression may be more informative about the status of activation of circulating T cells than their status of differentiation.  相似文献   

11.
Metastatic melanoma is poorly responsive to treatment, and immunotherapeutic approaches are potentially beneficial. Predictors of clinical response are needed to identify suitable patients. We sought factors associated with melanoma-specific clinical response following intradermal vaccination with autologous melanoma peptide and particulate hepatitis B antigen (HBsAg)-exposed immature monocyte-derived dendritic cells (MDDC). Nineteen patients with metastatic melanoma received a maximum of 8, 2-weekly vaccinations of DC, exposed to HBsAg in addition to autologous melanoma peptides. A further 3 patients received an otherwise identical vaccine that did not include HBsAg. Patients were assessed 1-2 monthly for safety, disease volume, and cellular responses to HBsAg and melanoma peptide. There was no significant toxicity. Of 19 patients receiving HBsAg-exposed DC, 9 primed or boosted a cellular response to HBsAg, and 10 showed no HBsAg response. HBsAg-specific responses were associated with in vitro T cell responses to melanoma peptides and to phytohemagglutinin (PHA). Zero out of 10 non-HBsAg-responding and 4/9 HBsAg-responding patients achieved objective melanoma-specific clinical responses or disease stabilization - 1 complete and 2 partial responses and 1 case of stable disease ( P=0.018). Development of melanoma-specific cellular immunity and T cell responsiveness to mitogen were greater in the group of patients responding to HBsAg. Therefore stimulation of an immune response to nominal particulate antigen was necessary when presented by melanoma peptide-exposed immature DC, to achieve clinical responses in metastatic melanoma. Since general immune competence may be a determinant of treatment response, it should be assessed in future trials on DC immunotherapy.  相似文献   

12.

Background

The ability of Taenia solium to modulate the immune system likely contributes to their longevity in the human host. We tested the hypothesis that the nature of the immune response is related to the location of parasite and clinical manifestations of infection.

Methodology

Peripheral blood mononuclear cells (PBMC) were obtained from untreated patients with neurocysticercosis (NCC), categorized as having parenchymal or subarachnoid infection by the presence of cysts exclusively within the parenchyma or in subarachnoid spaces of the brain, and from uninfected (control) individuals matched by age and gender to each patient. Using multiplex detection technology, sera from NCC patients and controls and cytokine production by PBMC after T. solium antigen (TsAg) stimulation were assayed for levels of inflammatory and regulatory cytokines. PBMC were phenotyped by flow cytometry ex vivo and following in vitro stimulation with TsAg.

Principal Findings

Sera from patients with parenchymal NCC demonstrated significantly higher Th1 (IFN-γ/IL-12) and Th2 (IL-4/IL-13) cytokine responses and trends towards higher levels of IL-1β/IL-8/IL-5 than those obtained from patients with subarachnoid NCC. Also higher in vitro antigen-driven TNF-β secretion was detected in PBMC supernatants from parenchymal than in subarachnoid NCC. In contrast, there was a significantly higher IL-10 response to TsAg stimulation in patients with subarachnoid NCC compared to parenchymal NCC. Although no differences in regulatory T cells (Tregs) frequencies were found ex vivo, there was a trend towards greater expansion of Tregs upon TsAg stimulation in subarachnoid than in parenchymal NCC when data were normalized for the corresponding controls.

Conclusions/Significance

T. solium infection of the subarachnoid space is associated with an enhanced regulatory immune response compared to infection in the parenchyma. The resulting anti-inflammatory milieu may represent a parasite strategy to maintain a permissive environment in the host or diminish inflammatory damage from the host immune response in the central nervous system.  相似文献   

13.
Kinetics of TCR use in response to repeated epitope-specific immunization   总被引:4,自引:0,他引:4  
Selection of T cell-directed immunization strategies is based extensively on discordant information derived from preclinical models. We characterized the kinetics of T cell selection in response to repeated antigenic challenge. By enumerating with epitope/HLA tetrameric complexes (tHLA) vaccine-elicited T cell precursor frequencies (Tc-pf) in melanoma patients exposed to the modified gp100 epitope gp100:209-217 (g209-2M) we observed in most patients that the Tc-pf increased with number of immunizations. One patient's kinetics were further characterized. Dissociation kinetics of g209-2M/tHLA suggested enrichment of T cell effector populations expressing TCR with progressively higher affinity. Furthermore, vaccine-elicited T cells maintained the ability to express IFN-gamma ex vivo and proliferate in vitro. Thus, repeated exposure to immunogenic peptides benefited immune competence. These results provide a rationale for immunization strategies.  相似文献   

14.
The adoptive transfer of tumor-reactive CD8(+) T cells into tumor-bearing hosts provides an attractive alternative to vaccination-based active immunotherapy of melanoma. The development of techniques that result in the preferential expansion of tumor-reactive T cells is therefore of great importance. In this study, we report the generation of HLA-A*0201-restricted CD8(+) T cell populations that recognize either tyrosinase(369-376) or gp100(209-217) from tolerant human class I MHC-transgenic mice by using single amino acid-substituted variant peptides. Low peptide concentration or restimulation with the parent peptide was used to enhance the functional avidity, defined by stimulation of IFN-gamma accumulation, and cross-reactivity of the resulting T cell populations. We found a direct correlation between the ability of a T cell population to respond in vitro to low concentrations of the precise peptide expressed on the tumor and its ability to delay the outgrowth of B16 melanoma after adoptive transfer. Surprisingly, we found that some T cells that exhibited high functional avidity and were effective in controlling tumor outgrowth exhibited low structural avidity, as judged by MHC-tetramer staining. Our results establish strategies for the development and selection of CD8(+) T cell populations that persist despite peripheral tolerance, and that can control melanoma outgrowth. Furthermore, they support the use of human MHC class I-transgenic mice as a preclinical model for developing effective immunotherapies that can be rapidly extended into therapeutic settings.  相似文献   

15.
Prostate-specific antigen (PSA) is a potentially useful antigen for targeted T-cell immunotherapy of prostate cancer (CaP). Our laboratory has identified a synthetic nonamer peptide (PSA 146-154) homologue of PSA, which binds to the prevalent human leukocyte antigen, HLA-A2, and elicits specific cytotoxic T-lymphocyte (CTL) responses from normal individuals of the HLA-A2 phenotype. In the present study, we report on the induction of CTL from peripheral blood mononuclear cells (PBMC) of patients with hormone-refractory CaP, which exhibit the same specificity. T-cell lines were established from two patients by stimulation of PBMC with PSA 146-154 peptide in vitro. The T-cell lines exhibited specific cytolytic activity against T2 cells pulsed with PSA 146-154 peptide, but not a control HLA-A2 binding peptide (HIV-RT 476-484) via chromium release assay (CRA). The T-cell lines also showed PSA 146-154 peptide-specific IL-4 responses, but no detectable interferon-gamma (IFN-gamma) responses via enzyme-linked immuno-spot assays. Magnetic immuno-selection studies of one of the T-cell lines demonstrated that both cytolytic and interleukin-4 (IL-4) responses were mediated by CD8(+), but not by CD4(+) T cells. This Tc2 line was further characterized for the ability to recognize endogenously processed PSA epitopes. The line specifically secreted IL-4 in response to HLA-A2(+) target cells transfected to express PSA and specifically lysed the PSA(+) target cells, but not control transfected cells. The results indicate that the PSA 146-154 peptide emulates a naturally processed and presented peptide epitope of PSA that is within the T-cell repertoire of HLA-A2(+)patients with CaP.  相似文献   

16.
Innate and adaptive immune responses induced by leptospirosis have not been well characterized. In this study we show that in vitro exposure of naive human PBMC to Leptospira interrogans results in cell proliferation and the production of IFN-gamma, IL-12, and TNF-alpha. Cell proliferation was highest when using high numbers of Leptospira. Optimal cell proliferation occurred at 6-8 days, and the majority of cells contained in these cultures were gamma/delta T cells. These cultures showed a 10- to 50-fold expansion of gamma/delta T cells compared with the initial cellular input. Additionally, these cultures contained elevated numbers of NK cells. In contrast, exposure of PBMC to low numbers of Leptospira failed to induce gammadelta T cell or NK cell expansion, but induced significant alphabeta T cell expansion. Vgamma9/Vdelta2 were expressed on all gamma/delta T cells expanded by exposure of PBMC to Leptorspira: Leptospira stimulation of purified TCRgammadelta(+) T cells, obtained from 8-day cultures of Leptospira-stimulated PBMC, induced high levels of IFN-gamma production, but no cell proliferation, suggesting that such stimulation of gammadelta T cells did not depend on specialized accessory cells or Ag processing. Finally, in patients with acute leptospirosis, there was a significant (4- to 5-fold) increase in the number of peripheral blood TCRgammadelta(+) T cells. These results indicate that Leptospira can activate gammadelta T cells and alphabeta T cells and will guide further investigations into the roles of these T cell populations in host defense and/or the pathology of leptospirosis.  相似文献   

17.
Melan-A/MART1 is a melanocytic differentiation antigen expressed by tumor cells of the majority of melanoma patients and, as such, is considered as a good target for melanoma immunotherapy. Nonetheless, the number of class I and II restricted Melan-A epitopes identified so far remains limited. Here we describe a new Melan-A/MART-1 epitope recognized in the context of HLA-DQa1*0101 and HLA-DQb1*0501, -DQb1*0502 or -DQb1*0504 molecules by a CD4+ T cell clone. This clone was obtained by in vitro stimulation of PBMC from a healthy donor by the Melan-A51-73 peptide previously reported to contain a HLA-DR4 epitope. The Melan-A51-73 peptide, therefore contains both HLA-DR4 and HLA-DQ5 restricted epitope. We further show that Melan-A51-63 is the minimal peptide optimally recognized by the HLA-DQ5 restricted CD4+ clone. Importantly, this clone specifically recognizes and kills tumor cell lines expressing Melan-A and either HLA-DQb1*0501, -DQb1*0504 or -DQb1*0502 molecules. Moreover, we could detect CD4+ T cells secreting IFN-gamma in response to Melan-A51-63 and Melan-A51-73 peptides among tumor infiltrating and blood lymphocytes from HLA-DQ5+ patients. This suggests that spontaneous CD4+ T cell responses against this HLA-DQ5 epitope occur in vivo. Together these data significantly increase the fraction of melanoma patients susceptible to benefit from a Melan-A class II restricted vaccine approach.  相似文献   

18.
IL-21, a newly described cytokine belonging to the IL-2 gamma-chain receptor cytokine family (that includes IL-2, IL-7, and IL-15), has been described as an important regulator of the cellular immune response. In this study, the role of IL-21 in the generation of a human Ag-specific CD8+ T cell response is characterized by tracking a rare, but measurable population of self-Ag-specific T cells in vitro. Autologous dendritic cells pulsed with the melanoma antigen recognized T cells 1 self-peptide were used to stimulate CD8+ T cells from HLA-A2+ healthy donors and melanoma patients. We demonstrate that exposure to IL-21 increased the total number of MART-1-specific CD8+ T cells that could be elicited by >20-fold and, at the clonal level, enriched for a population of high-affinity CD8+ T cells with a peptide dose requirement more than 1 log(10)-fold less than their untreated counterparts. Phenotypic analysis of T cells from IL-21-treated cultures revealed a unique population of CD45RO+ CD28(high) CD8+ T cells, a phenotype that was stable for at least 4 wk after IL-21 exposure. These CD28(high) CD8+ T cells produced IL-2 upon Ag stimulation and represent potential helper-independent CTLs. Our studies demonstrate a significant role for IL-21 in the primary Ag-specific human CTL response and support the use of IL-21 in the ex vivo generation of potent Ag-specific CTLs for adoptive therapy or as an adjuvant cytokine during in vivo immunization against tumor Ags.  相似文献   

19.
The cloning of cancer Ags recognized by T cells has provided potentially new tools to enhance immunity against metastatic cancer. The biological monitoring of effective immunization has, however, remained a dilemma. We describe here a sensitive molecular quantitation methodology that allows analysis of in vivo immune response to vaccination. Metastatic melanoma patients were immunized with a synthetically modified peptide epitope (209-2M) from the melanoma self-Ag gp100. Using serial gene expression analysis, we report functional evidence of vaccine-induced CTL reactivity in fresh cells obtained directly from the peripheral blood of postimmunized patients. Further, we demonstrate in vivo localization of vaccine-induced immune response within the tumor microenvironment. The results of these molecular assays provide direct evidence that peptide immunization in humans can result in tumor-specific CTL that localize to metastatic sites.  相似文献   

20.
Cell-based antitumor immunity is driven by CD8(+) cytotoxic T cells bearing TCR that recognize specific tumor-associated peptides bound to class I MHC molecules. Of several cellular proteins involved in T cell:target-cell interaction, the TCR determines specificity of binding; however, the relative amount of its contribution to cellular avidity remains unknown. To study the relationship between TCR affinity and cellular avidity, with the intent of identifying optimal TCR for gene therapy, we derived 24 MART-1:27-35 (MART-1) melanoma Ag-reactive tumor-infiltrating lymphocyte (TIL) clones from the tumors of five patients. These MART-1-reactive clones displayed a wide variety of cellular avidities. alpha and beta TCR genes were isolated from these clones, and TCR RNA was electroporated into the same non-MART-1-reactive allogeneic donor PBMC and TIL. TCR recipient cells gained the ability to recognize both MART-1 peptide and MART-1-expressing tumors in vitro, with avidities that closely corresponded to the original TCR clones (p = 0.018-0.0003). Clone DMF5, from a TIL infusion that mediated tumor regression clinically, showed the highest avidity against MART-1 expressing tumors in vitro, both endogenously in the TIL clone, and after RNA electroporation into donor T cells. Thus, we demonstrated that the TCR appeared to be the core determinant of MART-1 Ag-specific cellular avidity in these activated T cells and that nonreactive PBMC or TIL could be made tumor-reactive with a specific and predetermined avidity. We propose that inducing expression of this highly avid TCR in patient PBMC has the potential to induce tumor regression, as an "off-the-shelf" reagent for allogeneic melanoma patient gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号