首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The in vivo and in vitro conditions which allow a response of rat circulating lymphocyte PDH to insulin are investigated. 2. In vivo tests show that inactive PDH (PDHi) prevails in diabetic rats and active PDH (PDHa) in hyperinsulinemic rats; in treated with insulin diabetic rats the PDHa/PDHi ratio (1.7) is similar to that of normal rats (PDHa/PDHi ratio = 2). 3. In vitro tests show a responsiveness of PDH to insulin only when 50 microM Ca2+ -Mg2+ and intact lymphocytes are used in the incubation medium. Insulin concentrations and contact time are important variables.  相似文献   

2.
Objective: The objective of this study was to determine whether down‐regulation of pyruvate dehydrogenase phosphatase (PDP) is responsible for poorly active pyruvate dehydrogenase (PDH) in circulating lymphocytes (CLs) of obese subjects (ObS), and if so, whether it improves when their plasma insulin rises. Research Methods and Procedures: PDH activity was compared in lysed CLs of 10 euglycemic ObS and 10 sex‐ and age‐matched controls before and during plasma insulin enhancement in an oral glucose tolerance test. It was evaluated without (PDHa) or with Mg/Ca or Mg at various concentrations to assess PDP1 or PDP2 activities or with Mg/Ca and exogenous PDP to determine total PDH activity (PDHt), which is an indirect measure of the amount of PDH. The insulin sensitivity index was calculated, and PDP1 and PDP2 mRNA was sought in the CLs. Results: At T0 in ObS, PDHt was normal, whereas PDHa and PDP1 activity was below normal at all Mg/Ca concentrations. PDP2 activity was undetectable in both groups. PDP1 and PDP2 mRNA was identified, and insulin sensitivity index and PDHa were directly correlated. During the oral glucose tolerance test, plasma insulin rose considerably more in ObS than in controls; PDHa and PDP1 activity also increased but remained significantly below normal, and PDHt was unvaried in both groups. Discussion: PDP1 is down‐regulated in CLs of ObS because it is poorly sensitive to Mg/Ca; this defect is attenuated when plasma insulin is greatly enhanced.  相似文献   

3.
1. In human circulating lymphocytes pyruvate dehydrogenase (PDH) complex is present in the active (PDHa) and inactive (PDHi) forms. 2. PDHi conversion into PDHa is stimulated when intact lymphocytes are incubated with 5 microU/ml insulin at pH 7.4, for 15 min at 37 degrees C in a medium supplemented with 50 microM Ca2+-Mg2+. 3. The generation of a mediator is strongly suggestive since a cell free preparation from circulating lymphocytes, treated as above described, still stimulates PDHi----PDHa conversion, when combined with either disrupted or intact lymphocytes.  相似文献   

4.
In a mixture of plasma membranes/mitochondria from normal rat brain, pyruvate dehydrogenase (PDH) is present in the active (PDHa) and the inactive (PDHi) form; the latter is converted into the former by preincubation with Ca2+ and Mg2+ and represents about 40% of total PDH (PDHt = PDHa + PDHi). Incubation with increasing insulin concentrations activates PDHa and PDHt, the maximum being reached at 25 microU/ml insulin; inhibition appears with further insulin increase. In a mixture of plasma membranes and mitochondria from alloxan rat brain PDHa activity markedly decreases; no activation is achieved by preincubation with Ca2+ and Mg2+. However an activating effect of Ca2+ and Mg2+ appears when the mixture is added and incubated with increasing insulin concentrations. PDHa and PDHt activity reaches a maximum of stimulation at 25 microU/ml insulin; the activation is reduced at higher concentrations of insulin though no inhibition appears. ATP partially inhibits PDHa in normal and alloxan rat brain plasma membrane/mitochondria mixtures; this effect is completely cancelled by 25 microU/ml insulin.  相似文献   

5.
1. Studies have shown that in circulating lymphocytes pyruvate dehydrogenase (PDH) is responsive to insulin. 2. To improve existing knowledge on how insulin influences PDH behaviour, situations in which cell responsiveness to insulin is impaired could be of interest. 3. PDH behaviour in circulating lymphocytes from obese children, with high plasma insulin levels and normal glucose tolerance, was examined. 4. Masking and unmasking processes of insulin receptors on the plasma membrane appear to modulate the enzyme response to insulin.  相似文献   

6.
S Emami  M C Perry 《FEBS letters》1986,200(1):51-57
The requirement for Ca2+ and Mg2+ in the actions of insulin and sodium nitroprusside on rat adipocyte metabolism was investigated: sodium nitroprusside, but not insulin, increased cGMP levels in cells incubated in the absence of Ca2+ and/or Mg2+; sodium nitroprusside and insulin are unable to increase the incorporation of [14C]glucose into triglycerides and [14C]leucine into proteins in the absence of Ca2+ and Mg2+; sodium nitroprusside and insulin showed antilipolytic actions in Ca2+- and Mg2+-free medium. We conclude that in the absence of Ca2+ and Mg2+, sodium nitroprusside and insulin have very similar regulatory properties on triglyceride, protein synthesis and adrenaline-stimulated lipolysis, but not on cGMP levels in rat adipocytes. This could provide evidence that omission of bivalent cations was inhibitory at more than one site, or that sodium nitroprusside mimics insulin's actions by another mechanism that does not involve cGMP.  相似文献   

7.
Magnesium (Mg2+) is an abundant intracellular cation that participates in the regulation of the intracellular concentration of ATP. In this study, we examined the relationship between insulin secretion and intracellular free Mg2+ ([Mg2+]i) in a rat-insulinoma cell line (RIN m5F), using a fluorescent dye (Mag-fura-2). KCI, forskolin, and D-glyceraldehyde increased [Mg2+]i and insulin secretion from RIN m5F cells in a dose-dependent fashion. Verapamil, a voltage-dependent Ca2+ channel blocker, inhibited the increase of [Mg2+]i that was evoked by KCI, forskolin, and D-glyceraldehyde. In a Mg(2+)-free buffer, these agents failed to cause an elevation in [Mg2+]i; however, the insulin response to KCI and forskolin was enhanced, compared with that in the presence of Mg2+ (1.25 mM). Our findings suggest that [Mg2+]i is dependent upon extracellular Mg2+, and the influx through the voltage-dependent Ca2+ channel. Mg2+ may competitively inhibit the voltage-dependent Ca2+ channel, which is known to play a role in insulin secretion. An absence of Mg2+ in the extracellular space may result in enhanced insulin secretion. [Mg2+]i may play a role in insulin secretion from RIN m5F cells.  相似文献   

8.
The effects of ommission of Ca2+ and Mg2+ from the incubation medium on three aspects of insulin action in isolated fat cells have been investigated. In the (Ca2+ + Mg2+)-free incubation medium incorporation of L-[14C]leucine into fat cell protein was reduced in the absence of insulin. Insulin stimulated L-[14C]leucine incorporation only in the presence of added CaCl2 or MgCl2. Incubation of the cells in the (Ca2+ + Mg2+)-free medium reduced but did not abolish the ability of adrenaline to stimulate lipolysis or the ability of insulin to inhibit the adrenaline-stimulated lipolysis. Specific binding of 125I-labelled insulin to the fat cells was reduced in the absence of Ca2+ and Mg2+ but was not abolished, even in the presence of EDTA. Ca2+ was routinely the most effective divalent cation in supporting these aspects of insulin action, but similar responses were obtained with Mg2+, Sr2+ and Ba2+. Since insulin still binds to the cells under conditions in which some of the cellular effects of the hormone are abolished, it is suggested that divalent cations may have a role, either direct or indirect, in the processes linking the insulin-insulin receptor complex to certain effector systems in the cells. It is tentatively suggested that this action occurs at the level of the fat cell plasma membrane.  相似文献   

9.
10.
Insulin receptor was co-purified from human placenta together with insulin-stimulated kinase activity that phosphorylates the insulin receptor on serine residues. By using this 'in vitro' system, the mechanism of activation of the serine kinase by insulin was explored. Peptide 1150, histone, poly(Glu-Tyr), eliminating Mn2+ (Mg2+ only), treatment at 37 degrees C (1 h), N-ethylmaleimide, phosphate, beta-glycerol phosphate and anti-phosphotyrosine antibody all inhibited insulin-receptor tyrosine kinase activity and the ability of insulin to stimulate phosphorylation of the insulin receptor on serine. Additionally, direct stimulation of the receptor tyrosine kinase by vanadate increased serine phosphorylation of the insulin receptor. Insulin-stimulated tyrosine phosphorylation preceded insulin-stimulated serine phosphorylation of the insulin receptor. The activity of the insulin-sensitive receptor serine kinase was not augmented by cyclic AMP, cyclic GMP, Ca2+, Ca2+ + calmodulin, Ca2+ + phosphatidylserine + diolein or spermine, or inhibited appreciably by heparin. Additionally, the serine kinase phosphorylated casein or phosvitin poorly and was active with Mn2+. This indicates that it is distinct from Ca2+, Ca2+/phospholipid, Ca2+/calmodulin, cyclic AMP- and cyclic GMP-dependent protein kinases, casein kinases I and II and insulin-activated ribosomal S6 kinase. Taken together, these data indicate that a novel species of serine kinase catalyses the insulin-dependent phosphorylation of the insulin receptor and that activation of this receptor serine kinase by insulin requires an active insulin-receptor tyrosine kinase.  相似文献   

11.
The total activity of pyruvate dehydrogenase (PDH) complex in rat hind-limb muscle mitochondria was 76.4 units/g of mitochondrial protein. The proportion of complex in the active form was 34% (as isolated), 8-14% (incubation with respiratory substrates) and greater than 98% (incubation without respiratory substrates). Complex was also inactivated by ATP in the presence of oligomycin B and carbonyl cyanide m-chlorophenylhydrazone. Ca2+ (which activates PDH phosphatase) and pyruvate or dichloroacetate (which inhibit PDH kinase) each increased the concentration of active PDH complex in a concentration-dependent manner in mitochondria oxidizing 2-oxoglutarate/L-malate. Values giving half-maximal activation were 10 nM-Ca2+, 3 mM-pyruvate and 16 microM-dichloroacetate. Activation by Ca2+ was inhibited by Na+ and Mg2+. Mitochondria incubated with [32P]Pi/2-oxoglutarate/L-malate incorporated 32P into three phosphorylation sites in the alpha-chain of PDH; relative rates of phosphorylation were sites 1 greater than 2 greater than 3, and of dephosphorylation, sites 2 greater than 1 greater than 3. Starvation ( 48h ) or induction of alloxan-diabetes had no effect on the total activity of PDH complex in skeletal-muscle mitochondria, but each decreased the concentration of active complex in mitochondria oxidizing 2-oxoglutarate/L-malate and increased the concentrations of Ca2+, pyruvate or dichloracetate required for half-maximal reactivation. In extracts of mitochondria the activity of PDH kinase was increased 2-3-fold by 48 h starvation or alloxan-diabetes, but the activity of PDH phosphatase was unchanged.  相似文献   

12.
The requirement of extracellular Ca2+ for insulin action has been indicated by past studies. With a view to understand the interaction of insulin with Ca2+ in the vicinity of the cell membrane, we have examined the ability of insulin and its constituent polypeptide chains A and B to translocate Ca2+ and Mg2+ across the lipid bilayer in two sets of synthetic liposomes. The first were unilamellar vesicles made of dimyristoylphosphatidylcholine and contained the Ca2+ sensor dye arsenazo III. Peptide-mediated Ca2+ and Mg2+ transport in these vesicles was monitored at 37 degrees C in a neutral buffer containing CaCl2 or MgCl2 using a difference absorbance method. In the second set, multilamellar vesicles of egg lecithin containing trapped fura-2 were employed and the cation transport was followed at 20 degrees C by fluorescence changes in the dye. Control experiments indicated that the hormonal peptides caused no appreciable perturbation of the vesicles leading to leakage of contents or membrane fusion. In both liposome systems, substantial Ca2+ and Mg2+ transport was observed with insulin and the B chain; the A chain was less effective as an ionophore. Quantitative analysis of the transport kinetic data on the B chain showed a 1:1 peptide-Ca2+ complex formed inside the membrane. In light of the available structural data on Ca2+ binding by insulin and insulin receptor, our results suggest the possibility of the hormone interacting with the receptor with the bound Ca2+.  相似文献   

13.
The effects of divalent cations, in particular Ca2+ and Mg2+, on glucose uptake by rat isolated fat cells in the presence and absence of insulin have been studied. EDTA (disodium salt) was used to deplete the bovine serum albumin present in the incubation medium of endogenous divalent cations prior to incubation with the cells, but was not present in the incubation medium during the incubation of the cells. The removal of Ca2+ and Mg2+ from the incubation medium did not affect the basal glucose uptake, but abolished the ability of insulin to stimulate glucose uptake by the cells. Addition of 25 microM MgCl2 or CaCl2 to the incubation medium restored a significant insulin stimulation, and this stimulation was maximal when 0.1 mM MgCl2 or CaCl2 had been added. SrCl2 and BaCl2 were also effective in restoring the insulin stimulation, but did not substitute fully for Ca2+ and Mg2+ in the incubation medium. Possible explanation for these observations are discussed.  相似文献   

14.
Insulin stimulates autophosphorylation of the beta subunit of its receptor and activates the associated tyrosine kinase. This kinase, in turn, phosphorylates a number of specific protein substrates; however, the functional and structural identity of these substrates is largely unknown. In this study, we demonstrate that insulin also stimulates the phosphorylation of calmodulin by rat hepatocyte insulin receptors partially purified by wheat germ agglutinin affinity chromatography. Phosphorylation occurred predominantly on tyrosine residues and had an absolute requirement for insulin receptors, divalent cations, and certain basic proteins. Maximal 32P incorporation was observed at an insulin concentration of 5 X 10(-9) M, and the K0.5 for insulin was approximately 4 X 10(-10) M. Phosphorylation of calmodulin was dependent upon ATP, saturating at 100 microM ATP with a K0.5 of 30 microM. Insulin-stimulated phosphorylation of calmodulin was also dependent upon Mg2+ or Mn2+, but was approximately 12-fold greater in the presence of Mg2+. Maximal phosphorylation was observed in the absence of Ca2+ and was inhibited at Ca2+:EGTA ratios greater than 0.8 (0.16 microM free Ca2+). Certain basic proteins, such as polylysine, histone Hf2b, and protamine sulfate, were necessary to observe insulin-stimulated phosphorylation of calmodulin. The relative amount of insulin-stimulated phosphorylation of calmodulin observed in the presence of each of these proteins differed. Maximal insulin-stimulated phosphorylation was observed in the presence of polylysine. These data suggest that both Ca2+ and calmodulin may participate in the early post-receptor events in the cellular mechanism of insulin action in hepatocytes.  相似文献   

15.
The concentrations of Zn2+, Ca2+, Mg2+, Pi and adenine nucleotides were determined in insulin-secretory granules prepared from a transplantable rat insulinoma. Differential and density-gradient centrifugation analyses revealed that Zn2+ in this tissue was principally localized in the secretory granule, a second major fraction being found in association with cytosolic proteins. Pi was principally recovered in the latter fraction, whereas Ca2+ and Mg2+ were more widely distributed. Intragranular ion-distribution experiments suggested that Zn2+ was complexed mainly to insulin and its precursor forms and remained in the granule in an insoluble state. The Zn2+/insulin ratio (0.54) was greater than that expected for insulin molecules having two centrally co-ordinated Zn2+ atoms/hexamer, but less than the maximal Zn2+-binding capacity of the molecule. Most of the granular Ca2+, Mg2+ and Pi was released in a soluble form when granules were disrupted by sonication. Simulation in vitro of the ionic composition of the granule suggested that up to 90% of its Ca2+ was complexed to Pi and adenine nucleotides. Granular macromolecules also bound Ca2+, as shown by equilibrium-dialysis studies of granule lysates. However, such binding was displaced by Mg2+. Examination of the efflux of Ca2+ from granules incubated in iso-osmotic suspensions at 37 degrees C suggested that the passive permeability of the granule membrane to Ca2+ was very low. Nevertheless, more than 50% of the granular Ca2+ was rapidly released in an ionized form on hypo-osmotic or detergent-induced disruption of the granule membrane. This may represent a potentially mobilizable pool of Ca2+ in vivo.  相似文献   

16.
(1) Rat heart mitochondria, permeabilized to all low Mr solutes by toluene treatment, have been used to study the regulation in situ of the phosphatase and kinase components of the pyruvate dehydrogenase complex (PDH) by Ca2+. (2) Inactivation of the complex, resulting from phosphorylation by the kinase, and reactivation induced by the phosphatase, were both apparent first-order processes. This behaviour of the phosphatase differs from that observed with toluene-permeabilized adipose tissue mitochondria (Midgley, P.J.W., Rutter, G.A. and Denton, R.M. (1987) Biochem. J. 241, 271-377) where a 'lag phase' preceded reactivation of inactive complex. Further, reactivation due to phosphatase activity was stimulated by Ca2+ only at subsaturating Mg2+ concentrations, in contrast with the extracted enzyme which is stimulated by Ca2+ at all Mg2+ concentrations. (3) Maximum values of half-times observed for inactivation and reactivation were about 10 and 15 s, respectively, at 30 degrees C. (4) At Mg2+ concentrations where effects of Ca2+ on the activity of the phosphatase were apparent, no effect of Ca2+ on the activity of the kinase could be detected. (5) The sensitivity of the phosphatase to [Ca2+] was essentially unchanged in the presence of either ADP or ATP, with half-maximal effects at 0.7 microM in each case.  相似文献   

17.
A possible interaction between Cd2+ and Ca2+ as a component in Cd2+-induced insulin release was investigated in beta cells isolated from obese hyperglycemic mice. The glucose stimulated Cd2+ uptake was dependent on the concentration of sugar. This uptake was sigmoidal with a Km for glucose of about 5 mM and was suppressed by both 50 microM of the voltage-activated Ca2+ channel blocker D-600 and 12 mM Mg2+. In the presence of 8 mM glucose 5 microM Cd2+ evoked a prompt and sustained stimulatory response, corresponding to about 3-fold of the insulin release obtained in the absence of the ion. Whereas 5 microM Cd2+ was without effect on the glucose-stimulated 45Ca efflux in the presence of extracellular Ca2+, 40 microM inhibited it. At a concentration of 5 microM, Cd2+ had no effect on the resting membrane potential or the depolarization evoked by either glucose or K+. In the absence of extracellular Ca2+ there was only a modest stimulation of 45Ca efflux by 5 microM Cd2+. Studies of the ambient free Ca2+ concentration maintained by permeabilized cells also indicate that 5 microM Cd2+ do not mobilize intracellularly bound Ca2+ to any great extent. On the contrary, at this concentration, Cd2+ even suppressed inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release. The present study suggests that Cd2+ stimulates insulin release by a direct mechanism which does not involve an increase in cytoplasmic free Ca2+ concentration.  相似文献   

18.
A proposed mechanism of action of hypoglycemic sulfonylureas is the prevention of transglutaminase-mediated endocytosis of insulin receptors. When activated by high levels of intracellular calcium, transglutaminase (TG) catalyzes the cross-linking of intracellular proteins to membrane proteins and modifies membrane structure and function. This study examined the effects of the sulfonylurea glipizide on TG activity in an erythrocyte model by assessing various membrane ATPase activities and high molecular weight protein polymer formation using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. To activate TG, red blood cells were exposed to 1 mM intracellular Ca2+ using 10(-5) M Ca2(+)-ionophore A23187. In Ca2(+)-stressed cells, calmodulin stimulation (0.1 micrograms/ml) of (Ca2+ + Mg2+)-ATPase was decreased to 21.2% of control activity. Increasing concentrations of calmodulin (0.1-3.0 micrograms/ml) could not overcome the inhibitory effects of TG on the (Ca2+ + Mg2+)-ATPase in Ca2(+)-stressed cells with or without glipizide. An increased Ca2+ sensitivity of calmodulin-independent (Ca2+ + Mg2+)-ATPase due to Ca2+ stress was seen in all Ca2(+)-stressed cells even in the presence of 1 mM glipizide. Structural changes were observed in the form of high molecular weight polymer formation. Cells exposed to high Ca2+ and glipizide (3 x 10(-5)-10(-3) M) showed no improvement in ATPase activity or protection from protein cross-linking compared with cells without the drug. We conclude that in this model glipizide fails to inhibit TG induced protein cross-linking and does not prevent the decrease in (Ca2+ + Mg2+)-ATPase activation in Ca2(+)-stressed red blood cells. This finding considerably weakens the proposal that sulfonylureas act by inhibiting TG activity.  相似文献   

19.
The mitogenic response of human peripheral blood lymphocytes to the lectin concanavalin A (conA) is inhibited by micromolar concentrations of CdCl2. This inhibition is partially relieved by an increase in the external Ca2+ concentration (from 0.6 to 2.2 mM). The initial rate of conA-induced 45Ca2+ influx is unaltered by CdCl2, although the level of 45Ca2+ accumulation increases. The basal rate of 45Ca2+ entry is not measurably disturbed by CdCl2 (100 microM). The steady-state efflux of 45Ca2+ and the calmodulin-activated (Ca2+ + Mg2+)-ATPase activity of erythrocyte ghosts are inhibited by CdCl2 (10 microM). Thus, the mechanism behind the Cd2+-induced suppression of the mitogenic response to conA is not due to alteration of mitogen-stimulated Ca2+ influx. We suggest that Cd2+ competes with Ca2+ for intracellular Ca2+-binding molecules, such as calmodulin, essential for the induction of cell proliferation.  相似文献   

20.
Insulin was employed as a stimulant in our continuing investigations of the molecular mechanisms involved in the coordinate control of cellular metabolism and growth. Incubation of chicken embryo fibroblasts for 16 hours in media containing 0-0.1 U insulin/ml resulted in a 17-fold increase in the rate of 3H-thymidine incorporation into DNA. Concomitantly, there were graded increases in intracellular K+ (14%) AND Mg2+ (22%) and no significant change in Ca2+. These changes in cation content occurred within 10 to 30 minutes and preceded the changes in 3H-thymidine incorporation. Insulin produced a consistent graded decrease in externally bound Mg2+ and Ca2+ and a concomitant increase in bound Na+ and K+ with no significant change in the rates of K+ and Mg2+ efflux. The results are consistent with the concept of Mg2+ as a second messenger for insulin action, as well as with the more general hypothesis that Mg2+ is the centtral agent in the coordinate control of metabolism and growth in animal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号