首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Activator protein (AP), which stimulated fibroblast sphingomyelinase activity, was isolated from the spleen of a patient with Gaucher's disease type I by the combined techniques of heat and alcohol denaturation, DEAE-cellulose column chromatography, gel filtration, preparative polyacrylamide-gel electrophoresis and decyl-agarose chromatography. Urea/sodium dodecyl sulphate (SDS)/polyacrylamide-gel electrophoresis showed two bands, one with an Mr of approx. 3,000 and the other with an Mr of 5,000-6,500. Similarly, SDS/polyacrylamide-gel electrophoresis performed in the absence of urea revealed the presence of two components, one of which adsorbed to a concanavalin A (Con A) column. Both components stimulated sphingomyelinase activity. On a non-denaturing polyacrylamide gel containing Triton X-100, four major components, two of which bound to Con A, were detected with the dye Stains-All. Cross-reacting material (CRM) to polyclonal Gaucher spleen AP antibodies was detected in normal fibroblasts and in fibroblasts from patients with sphingomyelinase and beta-glucocerebrosidase deficiency states (Niemann-Pick and Gaucher's diseases respectively). CRM in normal fibroblasts adsorbed to Con A columns and had the same mobility on SDS/polyacrylamide-gel electrophoresis as Con A-adsorbing Gaucher spleen AP. Normal AP was not observed in mucolipidosis type II (I-cell disease) fibroblasts; instead, extracts from these cells revealed the presence of two closely migrating bands with higher Mr values than normal fibroblast CRM. Furthermore, extracts of media from I-cell fibroblast cultures, but not from control or Gaucher fibroblast cultures, contained AP activity towards sphingomyelinase and beta-glucocerebrosidase. Fibroblasts from a patient with mucolipidosis type III (pseudo-Hurler polydystrophy) showed an intermediate pattern consisting of normal as well as the higher-Mr CRM. Our data provide evidence for the existence of AP in cultured skin fibroblasts and suggest that these proteins may be targetted to the lysosome by post-translational modification in a similar manner to that reported for lysosomal enzymes.  相似文献   

2.
The mitogenicity of germ cell proteins released from round spermatids (RS) and pachytene spermatocytes (PS) was investigated. Germ cells were isolated by centrifugal elutriation from 90-day-old rat testes and incubated in a supplement enriched culture media that lacked exogenous proteins. The conditioned culture media of RS and PS were dialysed/concentrated and lyophilized to prepare RS protein (RSP) and PS protein (PSP). Mitogenic activity of RSP and PSP was determined by 3H-thymidine incorporation into Swiss 3T3 fibroblasts. RSP and PSP stimulated 3H-thymidine incorporation by fibroblasts in a dose-dependent manner. At a higher concentration of RSP (300 micrograms/ml), fibroblast proliferation was stimulated from 6- to 20-fold of control cultures, whereas PSP (300 micrograms/ml) stimulated fibroblast proliferation 2.5-fold of control cultures. Since RSP exhibited substantially greater mitogenic activity than PSP we further investigated the RSP mitogenic substance(s) by immunoneutralization with antibodies against several growth factors. The mitogenic activity of RSP was significantly reduced by treatment with nerve growth factor (NGF) antibody, while neither the treatment of RSP with acidic fibroblast growth factor (aFGF) antibody, nor basic fibroblast growth factor (bFGF) antibody significantly modified the mitogenic activity of RSP. Interestingly, murine NGF-beta, recombinant human NGF-beta, and bovine serum albumin (BSA) did not exhibit mitogenic activity on 3T3 fibroblasts. Nevertheless, the presence of a NGF-like protein in RS and PS was confirmed by indirect immunofluorescence staining with a murine NGF antibody. Subsequently, a Western blot analysis with the NGF antibody identified two immunoreactive bands of 41 +/- 2 kDa and 51 +/- 1 kDa in both RSP and PSP under reduced conditions. These germ cell NGF-like proteins were apparently different from similarly prepared murine and human NGFs (13 kDa) in their molecular weight. Furthermore, neurite outgrowth from pheochromocytoma cells (PC-12), a functional bioassay for NGF-like activity, was stimulated by addition of RSP and PSP to the culture media of the PC-12 cells. These results demonstrate mitogenic activity in germ cell proteins (RSP and PSP) and identify a NGF-like protein(s) which is associated with most of this activity.  相似文献   

3.
Guinea pig lymph node cells stimulated in culture by T-cell mitogens or sensitizing antigens release ~60,000- and ~16,000-mol wt proteins that induce normal guinea pig fibroblasts to proliferate in vitro. These fibroblast proliferation factors can be separated from lymphocytederived chemotactic factor for fibroblasts and from lymphocyte mitogenic factor by gel filtration employing Sephadex G-100. The 16,000-mol wt fibroblast proliferation factor was found to coelute with interleukin 1 (IL 1) from gel filtration columns. When the 16,000 molecular weight factor was further analyzed by anion exchange-high-performance liquid chromatography five major peaks containing IL 1 activity were obtained, only one contained fibroblast proliferation activity, suggesting forms of IL 1 exist that are not mitogenic for fibroblast. Occasionally, a large-molecular-weight inhibitor of fibroblast proliferation was detectable in void volume fractions from gel filtration of supernatant from antigen-stimulated lymph node cell cultures. This inhibition was accompanied by gross aggregation of fibroblasts. These studies suggest that fibroblast accumulation at sites of certain cell-mediated immune reactions in vivo may in part be attributable to the release of mediators by lymphocytes and, or macrophages that induce fibroblast growth.  相似文献   

4.
The neurotrophic activity of astrocytes and fibroblasts and its regulation by various cytokines were investigated. Astrocyte conditioned medium (ACM) enhanced the survival of neurons and the proliferation of astrocytes in embryonic cortical cultures grown in serum-free defined medium. However, these results were not affected by acidic fibroblast growth factor, interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF alpha), and transforming growth factor-beta 1. In contrast, ACM induced choline acetyltransferase expression in septal cholinergic neurons via nerve growth factor (NGF)-dependent and -independent mechanisms. However, neither acidic nor basic fibroblast growth factor is involved in this biological activity in ACM. The cytokines listed above mainly stimulate NGF-mediated cholinergic neurotrophic activity in ACM. A combination of IL-1 beta and TNF alpha significantly enhanced choline acetyltransferase activity in septal neurons co-cultured with astrocytes, and this effect was found to be mediated by NGF produced by activated astrocytes. Effects of astrocytes on GABAergic neurons were also examined. ACM was found to increase glutamate decarboxylase activity in neuronal cultures from septum in the presence of Ara-C. However, the cytokines did not enhance this activity in ACM. Moreover, a combination of IL-1 beta and TNF alpha had no effect on glutamate decarboxylase activity in septal neurons co-cultured with astrocytes. In a final set of experiments, cholinergic neurotrophic activity in skin-derived fibroblast conditioned medium (FCM) was examined. FCM was found to possess biological activity similar to that of ACM on septal neurons grown in serum-free defined medium with Ara-C. The cytokines also enhanced NGF-mediated cholinergic neurotrophic activity in FCM. Astrocytes and fibroblasts were found to possess NGF-type and non-NGF-type cholinergic neurotrophic activity, and various cytokines were found to regulate the NGF-type cholinergic neurotrophic activity in both types of cells. NGF produced by astrocytes and fibroblasts that are activated by cytokines is likely to be important for development and regeneration of NGF-sensitive neurons in the central and peripheral nervous systems.  相似文献   

5.
Keratinocytes and fibroblasts isolated from human neonatal foreskin can be plated and grown through multiple rounds of division in vitro under defined serum-free conditions. We utilized these growth conditions to examine the mitogenic potential of acidic and basic fibroblast growth factor (aFGF and bFGF) on these cells. Our results demonstrate that both aFGF and bFGF can stimulate the proliferation of keratinocytes and fibroblasts. aFGF is a more potent mitogen than bFGF for keratinocytes. In contrast, bFGF appears to be more potent than aFGF in stimulating the growth of fibroblast cultures. Heparin sulfate (10 micrograms/ml) dramatically inhibited the ability of bFGF to stimulate the proliferation of keratinocytes. In comparison, heparin slightly inhibited the stimulatory effect of aFGF and had no effect on epidermal growth factor (EGF) stimulation in keratinocyte cultures. In fibroblast cultures the addition of heparin enhanced the mitogenic effect of aFGF, had a minimal stimulatory effect on the mitogenic activity of bFGF, and had no effect on EGF-stimulated growth. Our results demonstrate that the proliferation in vitro of two normal cell types found in the skin can be influenced by aFGF and bFGF and demonstrate cell-type specific differences in the responsiveness of fibroblasts and keratinocytes to these growth factors and heparin.  相似文献   

6.
Primary cultures of perinatal rat fibroblasts were found to produce at least three mitogenic activities which exhibited specificity for distinct cell types. One activity, lung growth factor(LGF), was a potent mitogen for chick embryonal fibroblasts, which also stimulated fetal rat lung fibroblasts to undergo DNA synthesis, provided that these cells were first exposed to a "competence" factor such as fibroblast growth factor or platelet-derived growth factor. Although LGF was active in the somatomedin-C (SmC) radioimmunoassay and resembled buffalo rat liver multiplication-stimulating activity (brlMSA) in molecular size, it appears to consist of a component that is neither SmC nor brlMSA. The second activity produced by perinatal rat lung cultures, pneumocyte-stimulating activity (PSA), stimulated mitosis in type II pneumocytes of postnatal rats, and was found to have physical attributes that are distinct from those of the other known pneumocyte-influencing factors. The third activity is a non-dialyzable substance which complements the mitogenic action of LGF on fetal lung fibroblasts, and appears to be a "competence" activity. An examination of the production of LGF and PSA by rat lung fibroblasts taken at various intervals of development revealed that fetal lung fibroblasts produce maximal levels of LGF but low levels of PSA, whereas, in neonatal lung fibroblasts, the situation is reversed. This ontogenic shift in the type of parahormone produced by the developing perinatal rat lung may be an important regulatory event in postnatal lung morphogenesis in this species.  相似文献   

7.
To study the effect of fibronectin isolated from plasma and culture media and the effect of its tryptic hydrolyzates on DNA synthesis, cultured skin fibroblasts of healthy donors and these of patients with systemic scleroderma (SSD) and rheumatoid arthritis (RA) were employed. It was shown that both fibronectin and total products of its proteolysis markedly stimulated DNA synthesis only in skin fibroblasts of patients with SSD. Fibronectin fragments inhibited DNA synthesis in all fibroblast strains studied. The effect of fibronectin and all its Gel fragments on the DNA synthesis in skin fibroblasts of patients with SSD was dose-dependent. The activity of total fibronectin tryptate, Gel-fragment-free tryptate, and Gel fragments themselves depended on the duration of fibronectin proteolysis, i. e. on the size of the fragments obtained. Culture media collected after treatment of fibroblast monolayer with trypsin and subsequent removal of fibronectin Gel fragments had mitogenic effect on skin fibroblasts, especially on those of patients with SSD and RA. It is supposed that fibronectin Gel fragments are inhibitors of growth factors produced by fibroblasts. The results suggest that fibronectin and its fragments have an important regulatory role in fibroblast proliferation.  相似文献   

8.
The cerebellum of young rats contains significant 5'-deiodinase (5'-D) activity, but technical difficulties have made it impossible to identify the enzyme in cultured cerebellar astrocytes. We have developed a culture method which allows cerebellar astrocytes from 6-day-old rats to grow and develop 5'-D activity. Astrocytes cultured for 2 weeks in medium containing 3.25 microM reduced glutathione (GSH) and 0.21 microM vitamin E (VitE) as alpha-tocopherol had 5'-D activity which was stimulated by 1 mM dibutyryl cyclic adenosine monophosphate (dBcAMP) given 16 hours before measuring enzyme activity. Cells cultured without GSH and VitE showed little 5'-D activity, which was not stimulated by dBcAMP Primary cultures of cerebellar astrocytes were cultured for four weeks with or without GSH+VitE, and stimulated by dBcAMP had high 5'-D activity, but were also sometimes contaminated with fibroblasts. The effect of such contamination on the astrocyte 5'-D activity was assessed by preparing primary cultures of fibroblasts from the meninges surrounding 6-day-old rat cerebella. They were grown in the same media and under the same conditions as the astrocytes. The cultured fibroblasts had 5'-D activity independent of GSH+VitE or culture time. The 5'-D activity of both cell populations could be type II 5'-deiodinase (5'-DII) because it was not inhibited by 6-n-propylthiouracil (PTU). Thus, cerebellar astrocytes cultured for 2 weeks in medium containing GSH and VitE have 5'-DII activity. Prolonged cultures favor enzyme activity, but also enhance contamination with fibroblasts, which may also show 5'-DII activity.  相似文献   

9.
Substance P (SP), fibroblast growth factor (FGF), and epidermal growth factor (EGF) are mitogens for fibroblasts. EGF acts as a progression factor, whereas FGF and SP have competence factor activity. The ability of eicosanoids to regulate proliferation of fibroblasts and the increased production of prostaglandins by fibroblasts in response to the growth factors, led us to investigate the involvement of cyclooxygenase-dependent arachidonic acid metabolites in the mitogenic response of serum-starved human skin fibroblasts to SP, FGF, and EGF. We tested the interaction of a submaximal concentration of SP(10−9 M) with baFGF (40 μg/ml) and EGF(0.01 μg/ml) both on fibroblast proliferation and release of arachidonic acid metabolites. A combination of SP and EGF synergistically stimulated fibroblast proliferation and prostaglandin E2 release, whereas addition of SP to FGF-containing cultures did not affect cell growth. Inhibition of cyclooxygenase by acetylsalicylic acid augmented the growth response of fibroblasts to all: SP, FGF, and EGF. In the presence of acetylsalicylic acid, SP combined with FGF enhanced fibroblast proliferation, whereas a combination with EGF inhibited cellular growth with respect to growth induced by EGF alone. Thus, interactions of SP with FGF and EGF differently affected the mitogenic response depending on the formation of arachidonic acid metabolites. The findings indicate that eicosanoids may be important mediators of competence and progression factor activities that may determine the effects of substance P on fibroblast proliferation in a cytokine network. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Summary The clastogenic factor in the plasma of ataxia telangiectasia (AT) patients and in conditioned medium from AT skin fibroblast cultures is a peptide with a molecular weight in the range of 500 to 1000. No clastogenic activity could be demonstrated in extracts of cultured AT fibroblasts.  相似文献   

11.
Sparse cultures of fetal and postnatal human fibroblasts were equivalent in their responsiveness to the mitogenic action of somatomedin C/insulin-like growth factor I (SM-C/IGF-I). At both developmental stages, the addition of SM-C/IGF-I (100 ng/ml) increased cell number at day 3 1.4-fold in serum-free medium and 2-fold in the presence of 0.25% human hypopituitary serum. Furthermore, dose-response curves indicated that there was no difference in the sensitivity of fetal and postnatal fibroblasts to the growth-promoting effects of SM-C/IGF-I, with a half-maximal response occurring at 6 ng/ml SM-C/IGF-I. This biological action of SM-C/IGF-I correlated with SM-C/IGF-I binding to fetal and postnatal fibroblast monolayers. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) also stimulated replication of fetal and postnatal fibroblasts. The mitogenic effects of SM-C/IGF-I, EGF, and PDGF were additive. Dexamethasone, which alone had no effect, was synergistic with SM-C/IGF-I in stimulating replication of postnatal fibroblasts. The combination of SM-C/IGF-I (100 ng/ml), dexamethasone (10(-7) M), EGF (10 ng/ml), and PDGF (5 ng/ml) had the same mitogenic effectiveness as 10% calf serum (CS) in postnatal cells. In marked contrast, there was no mitogenic interaction between SM-C/IGF-I and dexamethasone in fetal fibroblasts. In fetal cells, SM-C/IGF-I + EGF + PDGF +/- dexamethasone could only account for 50% of the activity of 10% CS. Moreover, fetal cells were 50-100% more responsive than postnatal cells to the proliferative effect of serum.  相似文献   

12.
Human neonatal skin fibroblasts plated sparsely in MCDB 105 traversed a complete cell cycle in the absense of serum or serum-derived proteins. Addition of pure PDGF did not significantly increase entrance into S phase as revealed by 3H-thymidine labeling index or clonal growth on palladium islands. In subphysiologic Ca2+ concentrations or in the presence of a calmodulin inhibitor, W7, proliferation in the absence of growth factors ceased and PDGF became mitogenic. In contrast, confluent fibroblast cultures were stimulated by PDGF in physiologic Ca2+ concentrations. This was also the case with sparse adult skin fibroblast cultures while a fetal strain entered S in the absence of PDGF even in low extracellular Ca2+ concentrations. EGF gave similar results as PDGF in all experiments performed. This proposes a similar role for the two growth factors in the cell cycle. However, a difference in the mechanisms of action of PDGF and EGF is indicated by the fact that PDGF and EGF were additive at optimal concentrations when maximal growth response by a single growth factor was restricted by a subphysiologic extracellular Ca2+ concentration.  相似文献   

13.
When spinal cord cultures from embryonic day 12 rats were cultured at low density, both acidic and basic fibroblast growth factors significantly increased neuronal survival and neurite outgrowth in a dose-dependent manner. The effects of acidic fibroblast growth factor were independent of heparin, in contrast to its mitogenic effects on both NIH3T3 cells and cerebral cortical astrocytes. In high-density cultures, acidic fibroblast growth factor increased choline acetyltransferase activity by 57%, glutamic acid decarboxylase activity by 58%, and aspartate aminotransferase activity by 65%. Basic fibroblast growth factor increased choline acetyltransferase activity by 73% and glutamic acid decarboxylase activity by 200% but decreased aspartate aminotransferase activity by 40%. Growing these cultures in the presence of a mitotic inhibitor did not significantly alter the effect of acidic or basic fibroblast growth factor on these enzyme activities. These results demonstrate that acidic and basic fibroblast growth factors differentially affect neurotransmitter enzyme levels of multiple classes of neurons, rather than having effects on a single neuronal population.  相似文献   

14.
The effect of flavonoids on beta-hexosaminidase transport and endocytosis has been studied in cultured human skin fibroblasts. In mucolipidosis II fibroblast cultures, characterized by their preferential secretion of most newly synthesized hydrolases, quercetin and phloretin (200 microM) inhibited beta-hexosaminidase synthesis as well as total culture-associated enzyme activity. Taxifolin induced a 2.4-fold increase in the total enzyme activity without altering the intra- and extracellular distribution of the enzyme. Rutin, although less effective, also stimulated an overall increase in total enzyme. The flavonoid effects were all concentration-dependent. Very little effect was observed in either the distribution or the total beta-hexosaminidase activity in normal fibroblast cultures. Taxifolin and hesperitin inhibited receptor-mediated endocytosis of beta-hexosaminidase by fibroblasts up to 50% of control uptake. Naringin, quercetin, and phloretin moderately inhibited uptake by 30% while rutin and fisetin had no effect. The results demonstrate that certain naturally occurring flavonoids affect the secretion of lysosomal enzymes as well as their endocytosis by fibroblasts. Since most individuals ingest up to one gram per day of these substances, flavonoids may prove to have significant effects on normal lysosomal enzyme physiology.  相似文献   

15.
The growth and metabolic activity of cultured cells derived from human adipose tissue (CAT cells) were studied and compared to cultured skin fibroblasts. The morphological appearance of the CAT cells was distinctly different from that of fibroblasts. The growth rate of CAT cells as measured by 3H-thymidine incorporation was much slower than the fibroblast growth rate. Cultured CAT cells synthesized significantly 14C-glucose, while fibroblast cultures had a higher metabolic rate as measured by CO2 production. Insulin stimulated 3H-thymidine incorporation in both CAT and fibroblast cultures. The CAT cells did not show a consistent insulin response of lipid or CO2 production, but this may be a reflection of donor age or nutritional status. Even though the CAT cell may be a type of stromal cell peculiar to adipose tissue rather than a preadipocyte or adipocyte, it may prove useful in studies of human obesity.  相似文献   

16.
In serum-starved mouse NIH 3T3 fibroblasts cultured in 1.8 mM Ca2+-containing medium, addition of 0.75-2 mM extra Ca2+ stimulated DNA synthesis in synergism with zinc (15-60 microM), insulin and insulin-like growth factor I. Extra Ca2+ stimulated phosphorylation/activation of p42/p44 mitogen-activated protein kinases by an initially (10 min) zinc-independent mechanism; however, insulin, and particularly zinc, significantly prolonged Ca2+-induced mitogen-activated protein kinase phosphorylation. In addition, extra Ca2+ activated p70 S6 kinase by a zinc-dependent mechanism and enhanced the stimulatory effect of zinc on choline kinase activity. Insulin and insulin-like growth factor I also commonly increased both p70 S6 kinase and choline kinase activities. In support of the role of the choline kinase product phosphocholine in the mediation of mitogenic Ca2+ effects, cotreatments with the choline kinase substrate choline (250 microM) and the choline kinase inhibitor hemicholinium-3 (2 mM) enhanced and inhibited, respectively, the combined stimulatory effect of extra Ca2+ (3.8 mM total) and zinc on DNA synthesis. In various human skin fibroblast lines, 1-2 mM extra Ca2+ also stimulated DNA synthesis in synergism with zinc and insulin. The results show that in various fibroblast cultures, high concentrations of extracellular Ca2+ can collaborate with zinc and certain growth factors to stimulate DNA synthesis. Considering the high concentration of extracellular Ca2+ in the dermal layer, Ca2+ may promote fibroblast growth during wound healing in concert with zinc, insulin growth factor-I insulin, and perhaps other growth factors.  相似文献   

17.
The lymphokine interleukin-2 (IL-2) promotes division and maturation of oligodendrocytes in culture (1). We now report that a IL-2-like activity was present in injured rat brain. The ion-exchange properties of this activity were similar to those of splenocyte IL-2 but its apparent molecular weight was higher. Brain IL-2-like activity was highest in the tissue immediately adjacent to the injury, reaching a maximal activity of about 8000 U/g tissue after 10 days postlesion. The mitogenic activity of injured-brain extracts on astrocytes and CTLL thymocytes was partially inhibited by monoclonal antibodies to murine IL-2 receptor. However, pure human IL-2 did not have mitogenic activity for cultured rat astrocytes. Purified astrocytes, alone or stimulated in a variety or ways, did not produce IL-2-like activity.  相似文献   

18.
Successful regeneration of damaged striated muscle in adult mice is dependent on the regeneration of newly differentiated myofibers from proliferating satellite cells and inhibition of scar tissue formation by fibroblasts. As with most tissues, the ability of skeletal muscle to regenerate decreases in older animals. In this study, we have analysed soluble extracts from intact and regenerating skeletal muscle from mice of different ages for their ability to affect avian myogenesis in tissue culture. We were interested in determining whether an age-dependent difference could be detected with this tissue culture bioassay system. Total cell proliferation in the cultures, measured by [3H]thymidine incorporation was increased equally by muscle extracts from both young and older mice but the resulting cell populations differed in proportion of cell types. The ratio of myoblasts to fibroblasts was significantly greater in cultures exposed to extracts from younger mouse muscle as compared with cultures exposed to extracts from older animals. This age-related activity was found to reside in a low molecular weight (MW) (greater than 12 kD) component of the extract. This fraction had dissimilar effects on myoblasts and fibroblasts. Relative to saline controls, myoblast proliferation was increased and fibroblast proliferation decreased. The low MW fraction from younger mouse muscle extracts stimulated myogenic cell proliferation and myotube formation to a greater extent than the similar fraction prepared from older mouse muscle. Conversely, younger mouse muscle fractions had significantly greater inhibitory activity against fibroblast proliferation than did older mouse muscle fractions.  相似文献   

19.
During tissue repair and development, matrix accumulation is modulated as multiple signals impinge on target cells. We have investigated the effects of combinations of the mitogenic cytokines, basic fibroblast growth factor (bFGF), transforming growth factor alpha (TGF-α), and insulin-like growth factor-1 (IGF-1) with transforming growth factor-beta 1 (TGF-β1) with respect to the production of two matrix components, elastin and type I collagen. Using specific enzyme-linked immunoassays for detection of secreted precursors in both vascular smooth muscle cells and skin fibroblasts from the domestic pig, production of these two fibrous proteins was shown to be strongly stimulated by TGF-β1. In the smooth muscle cell, both bFGF and TGF-α were potent antagonists of TGF-β1-mediated matrix production, whereas IGF-1 was only weakly additive with respect to elastin production. Antagonism was also evident to a lesser extent in skin fibroblasts. Reduced responsiveness to TGF-β1 did not appear to be due to a switch to a proliferative state, since TGF-β1 itself acted as a mitogen in confluent SMC, and TGF-α was only a weak mitogen in confluent fibroblast cultures. Although a predominant effect of TGF-β is matrix accumulation, these findings suggest that this property will be significantly modified by the cytokine context. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Effects of astroglia on the morphological and biochemical differentiation of catecholamine neurons from embryonic rat mesencephalon were studied in vitro, and compared to results obtained with fibroblasts. Neurite outgrowth and complexity were measured using computer-assisted morphometry on tyrosine hydroxylase immunoreactive neurons growing on preformed monolayers of astrocytes or fibroblasts. The morphological differentiation of these neurons was stimulated by the presence of astrocytes, and this effect was evident in various cellular compartments, including the size of the cell soma, length of neurites and neuritic segments, and the numbers of these segments. Tyrosine hydroxylase activity was measured biochemically in these cultures and was also found to be stimulated by the presence of astroglial monolayers. The implication of these results for the understanding of specific neuron-glial interactions during embryonic brain development is discussed.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号