首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The unfolding transition and kinetic refolding of dimeric creatine kinase after urea denaturation were monitored by intrinsic fluorescence and far ultraviolet circular dichroism. An equilibrium intermediate and a kinetic folding intermediate were identified and characterized. The fluorescence intensity of the equilibrium intermediate is close to that of the unfolded state, whereas its ellipticity at 222 nm is about 50% of the native state. The transition curves measured by these two methods are therefore non-coincident. The kinetic folding intermediate, formed during the burst phase of refolding under native-like conditions, possesses 75% of the native secondary structure, but is mostly lacking in native tertiary structure. In moderate concentrations of urea, only the initial, rapid change in fluorescence intensity or negative ellipticity is observed, and the final state values do not reach the equivalent unfolding values. The unfolding and refolding transition curves measured under identical conditions are non-coincident within the transition from intermediate to fully unfolded state. It is observed by SDS-PAGE that disulfide bond-linked dimeric or oligomeric intermediates are formed in moderate urea concentrations, especially in the refolding reaction. These rapidly formed, soluble intermediates represent an off-pathway event that leads to the hysteresis in the refolding transition curves.  相似文献   

2.
The acid denaturation of human glutathione transferase P1-1 (hGSTP1-1) has been performed to investigate the unfolding intermediates of the protein and their possible involvement in the refolding mechanism. The acid-induced structures of GSTP1-1 have been characterized by activity, gel filtration, intrinsic fluorescence and far-u.v. circular dichroism (CD) techniques. Because of the non-identity of the different transitions monitored, the acid denaturation of hGSTP1-1 appears to be a multistep process during which several intermediates coexist in equilibrium. The dependence of inactivation on the protein concentration, as well as gel-filtration experiments, indicate that the inactivation transition, centred at about pH 4.0, corresponds to the monomerization of the protein. At pH 2.0, when the enzyme is completely inactive, the protein retains a small, but significant, amount of secondary structure. This means that the dimeric arrangement of the molecule is important for maintaining the native-like secondary structure of the monomer. The results show that, at low pH, the compact state of the GST monomer, even upon the addition of salts, does not possess native-like secondary structure as described for many monomeric proteins (molten globule). In the presence of physiological concentrations of salts, the protein solution at pH 2.0 leads to a dead-end aggregation process, suggesting that this compact state cannot represent a productive intermediate of the refolding pathway.  相似文献   

3.
It is believed that denatured-reduced lysozyme rapidly forms aggregates during refolding process, which is often worked around by operating at low protein concentrations or in the presence of aggregation inhibitors. However, we found that low concentration buffer alone could efficiently suppress aggregation. Based on this finding, stable equilibrium intermediate states of denatured-reduced lysozyme containing eight free SH groups were obtained in the absence of redox reagents in buffer of low concentrations alone at neutral or mildly alkaline pH. Transition in the secondary structure of the intermediate from native-like to beta-sheet was observed by circular dichroism (CD) as conditions were varied. Dynamic light scattering and ANS-binding studies showed that the self-association accompanied the conformational change and the structure rich in beta-sheet was the intermediate state for aggregation, which could form either amyloid protofibril or amorphous aggregates under different conditions as detected by Electron Microscopy. Combining the results obtained from activity analysis, RP-HPLC and CD, we show that the activity recovery was closely related to the conformation of the refolding intermediate, and buffer of very low concentration (e.g. 10mM) alone could efficiently promote correct refolding by maintaining the native-like secondary structure of the intermediate state. This study reveals reasons for lysozyme aggregation and puts new insights into protein and inclusion body refolding.  相似文献   

4.
Fluorescence resonance energy transfer (FRET) is one of the few methods available to measure the rate at which a folding protein collapses. Using staphylococcal nuclease in which a cysteine residue was engineered in place of Lys64, permitted FRET measurements of the distance between the donor tryptophan 140 and 5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1-sulfonic acid-labeled Cys64. These measurements were undertaken on both equilibrium partially folded intermediates at low pH (A states), as well as transient intermediates during stopped-flow refolding. The results indicate that there is an initial collapse of the protein in the deadtime of the stopped-flow instrument, corresponding to a regain of approximately 60% of the native signal, followed by three slower transients. This is in contrast to circular dichroism measurements which show only 20-25% regain of the native secondary structure in the burst phase. Thus hydrophobic collapse precedes the formation of substantial secondary structure. The first two detected transient intermediate species have FRET properties essentially identical with those of the previously characterized equilibrium A state intermediates, suggesting similar structures between the equilibrium and transient intermediates.The effects of anions on the folding of acid-unfolded staphylococcal nuclease, and urea on the unfolding of the resulting A states, indicates that in folding the protein becomes compact prior to formation of major secondary structure, whereas in unfolding the protein expands prior to major loss of secondary structure. Comparison of the kinetics of refolding of staphylococcal nuclease, monitored by FRET, and for a proline-free variant, indicate that folding occurs via two partially folded intermediates leading to a native-like species with one (or more) proline residues in a non-native conformation. For the A states an excellent correlation between compactness measured by FRET, and compactness determined from small-angle X-ray scattering, was observed. Further, a linear relationship between compactness and free energy of unfolding was noted. Formation of soluble aggregates of the A states led to dramatic enhancement of the FRET, consistent with intermolecular fluorescence energy transfer.  相似文献   

5.
6.
Molten globules are partially folded forms of proteins thought to be general intermediates in protein folding. The 15N-1H HSQC NMR spectrum of the human alpha-lactalbumin (alpha-LA) molten globule at pH 2 and 20 degrees C is characterised by broad lines which make direct study by NMR methods difficult; this broadening arises from conformational fluctuations throughout the protein on a millisecond to microsecond timescale. Here, we find that an increase in temperature to 50 degrees C leads to a dramatic sharpening of peaks in the 15N-1H HSQC spectrum of human alpha-LA at pH 2. Far-UV CD and ANS fluorescence experiments demonstrate that under these conditions human alpha-LA maintains a high degree of helical secondary structure and the exposed hydrophobic surfaces that are characteristic of a molten globule. Analysis of the H(alpha), H(N) and 15N chemical shifts of the human alpha-LA molten globule at 50 degrees C leads to the identification of regions of native-like helix in the alpha-domain and of non-native helical propensity in the beta-domain. The latter may be responsible for the observed overshoot in ellipticity at 222 nm in kinetic refolding experiments.  相似文献   

7.
Several human neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Familial Amyloidotic Polyneuropathy, have long been associated with, structural and functional changes in disease related proteins leading to aggregation into amyloid fibrils. Such changes can be triggered by post-translational modifications. Methylglyoxal modifications have been shown to induce the formation of small and stable native-like aggregates in the case of the amyloidogenic proteins insulin and α-synuclein. However, the fundamental biophysical mechanism underlying such methylglyoxal-induced protein aggregation is not yet fully understood. In this work cytochrome c (Cyt c) was used as a model protein for the characterization of specific glycation targets and to study their impact on protein structure, stability, and ability to form native-like aggregates. Our results show that methylglyoxal covalently modifies Cyt c at a single residue and induces early conformational changes that lead to the formation of native-like aggregates. Furthermore, partially unfolded species are formed, but do not seem to be implicated in the aggregation process. This shows a clear difference from the amyloid fibril mechanisms which involve partially or totally unfolded intermediates. Equilibrium-unfolding experiments show that glycation strongly decreases Cyt c conformational stability, which is balanced with an increase of conformational stability upon aggregation. Data collected from analytical and spectroscopic techniques, along with kinetic analysis based on least-squares parameter fitting and statistical model discrimination are used to help to understand the driving force underlying glycation-induced native-like aggregation, and enable the proposal of a comprehensive thermodynamic and kinetic model for native-like aggregation of methylglyoxal glycated Cyt c.  相似文献   

8.
Limited proteolysis of the 153-residue chain of horse apomyoglobin (apoMb) by thermolysin results in the selective cleavage of the peptide bond Pro88-Leu89. The N-terminal (residues 1-88) and C-terminal (residues 89-153) fragments of apoMb were isolated to homogeneity and their conformational and association properties investigated in detail. Far-UV circular dichroism (CD) measurements revealed that both fragments in isolation acquire a high content of helical secondary structure, while near-UV CD indicated the absence of tertiary structure. A 1:1 mixture of the fragments leads to a tight noncovalent protein complex (1-88/89-153, nicked apoMb), characterized by secondary and tertiary structures similar to those of intact apoMb. The apoMb complex binds heme in a nativelike manner, as given by CD measurements in the Soret region. Second-derivative absorption spectra in the 250-300 nm region provided evidence that the degree of exposure of Tyr residues in the nicked species is similar to that of the intact protein at neutral pH. Also, the microenvironment of Trp residues, located in positions 7 and 14 of the 153-residue chain of the protein, is similar in both protein species, as given by fluorescence emission data. Moreover, in analogy to intact apoMb, the nicked protein binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonate (ANS). Taken together, our results indicate that the two proteolytic fragments 1-88 and 89-153 of apoMb adopt partly folded states characterized by sufficiently nativelike conformational features that promote their specific association and mutual stabilization into a nicked protein species much resembling in its structural features intact apoMb. It is suggested that the formation of a noncovalent complex upon fragment complementation can mimic the protein folding process of the entire protein chain, with the difference that the folding of the complementary fragments is an intermolecular process. In particular, this study emphasizes the importance of interactions between marginally stable elements of secondary structure in promoting the tertiary contacts of a native protein. Considering that apoMb has been extensively used as a paradigm in protein folding studies for the past few decades, the novel fragment complementing system of apoMb here described appears to be very useful for investigating the initial as well as late events in protein folding.  相似文献   

9.
Refolding of reduced pancreatic trypsin inhibitor has been examined under a variety of environmental conditions, varying the temperature, pH and ions of the solution, and determining the transient intermediates that accumulate and the kinetics of refolding. The effects of these variables on the rate of the thiol-disulphide exchange reaction, which is involved in each refolding step observed, were determined so that the kinetic effects on refolding could be interpreted in terms of the effect on protein conformation.Low temperature favoured the initial one-and two-disulphide intermediates with native-like disulphide bonds; the differences in enthalpy, entropy and heat capacity of the various species were estimated. Varying the pH somewhat had little effect on the pathway, as did variation of the ionic strength, although there were significant effects on the reactivities of various cysteine thiol groups at low ionic strength, which were apparently due to enhanced electrostatic interactions between charged groups of the protein. Varying the ions of the solution according to the Hofmeister series produced effects like those observed by others on protein stability: stabilizing salts produced the same effect as lower temperatures, destabilizing salts as higher temperatures, while indifferent salts had little effect. Low concentrations of the denaturants urea and guanidinium chloride had effects similar to those of destabilizing Hofmeister salts.All these effects point to the important intermediate states that are most populated having the greatest extent of stabilizing hydrophobic interactions.  相似文献   

10.
Unassisted refolding of urea unfolded rhodanese   总被引:4,自引:0,他引:4  
In vitro refolding after urea unfolding of the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) normally requires the assistance of detergents or chaperonin proteins. No efficient, unassisted, reversible unfolding/folding transition has been demonstrated to date. The detergents or the chaperonin proteins have been proposed to stabilize folding intermediates that kinetically limit folding by aggregating. Based on this hypothesis, we have investigated a number of experimental conditions and have developed a protocol for refolding, without assistants, that gives evidence of a reversible unfolding transition and leads to greater than 80% recovery of native enzyme. In addition to low protein concentration (10 micrograms/ml), low temperatures are required to maximize refolding. Otherwise optimal conditions give less than 10% refolding at 37 degrees C, whereas at 10 degrees C the recovery approaches 80%. The unfolding/refolding phases of the transition curves are most similar in the region of the transition, and refolding yields are significantly reduced when unfolded rhodanese is diluted to low urea concentrations, rather than to concentrations near the transition region. This is consistent with the formation of "sticky" intermediates that can remain soluble close to the transition region. Apparently, nonnative structures, e.g. aggregates, can form rapidly at low denaturant concentrations, and their subsequent conversion to the native structure is slow.  相似文献   

11.
Sukumaran S  Hauser K  Maier E  Benz R  Mäntele W 《Biochemistry》2006,45(12):3972-3980
We have investigated outer membrane protein porin from Paracoccus denitrificans for its stability against heat and pH. Pathways of unfolding and refolding have been analyzed. Porin incubated at pH 12.5 and above undergoes a slow unfolding into an unordered structure. The unfolded protein could be refolded into a nativelike structure that is functionally active but with distinct deviation from the native protein. This nativelike structure exhibited an entirely different thermal stability. Although aggregation is normally considered a structural "dead-end", the possibility of opening an aggregated porin and forming a functionally active structure was analyzed here. Porin aggregates on heating above 86.2 degrees C. Incubating the heat-aggregated protein at high pH (> or = 12.5) leads to a slow opening of the protein into an unordered structure. It was possible to refold this unordered protein into a trimeric nativelike structure which was capable of forming active pores. However, the thermal stability of the refolded porin was unlike that of the native porin. To understand the basic mechanism behind the unfolding processes, the protein was subjected to heating at various pH values. It was observed that at pH > or = 12.5 the protein does not aggregate upon heating; instead, it opens into an unordered structure. We conclude that at high pH values, the electrostatic interactions of various amino acid residues are perturbed which leads to unfolding into an unordered structure. This study shows for the first time an entirely new unfolding and refolding pathway for porin.  相似文献   

12.
Addition of urea to solutions of Escherichia coli thioredoxin results in a cooperative unfolding of the protein centered at 6.7 M urea at 25 degrees C and 5.1 M urea at 2 degrees C and neutral pH as judged by changes in tryptophan fluorescence emission, far-ultraviolet circular dichroism, and exclusion chromatography. Kinetic profiles of changes in tryptophan fluorescence emission intensity were analyzed following either manual or stopped-flow mixing to initiate unfolding or refolding. Unfolding of the native protein occurs in a single kinetic phase whose time constant is markedly dependent on urea concentration. Refolding of the urea-denatured protein occurs in a multiplicity of kinetic phases whose time constants and fractional amplitudes are also dependent upon urea concentration. Urea gradient gel electrophoretic and exclusion chromatographic measurements suggest the transient accumulation of at least one and likely two compact nativelike intermediate conformations during refolding. Simulations of both electrophoretic and chromatographic results suggest that the intermediate conformations are generated by the concerted action of the middle and fast refolding phases.  相似文献   

13.
Chattopadhyay K  Mazumdar S 《Biochemistry》2003,42(49):14606-14613
The interaction of submicellar concentrations of sodium dodecyl sulfate (SDS) with horse heart cytochrome c has been found to stabilize two spectroscopically distinct partially folded intermediates at pH 7. The first intermediate is formed by the interaction of SDS with native cytochrome c, and this intermediate retains the majority of the secondary structure while the tertiary structure of the protein is lost. The unfolding of this intermediate with urea leads to the formation of a second intermediate, which is also formed on refolding of the unfolded protein (unfolded by urea) by SDS. The second intermediate retains about 50% of the native secondary structure with no tertiary structure of the protein. The second intermediate was found to be absent at low pH. While induction of helical structure of a protein by SDS in the native condition has been reported earlier, this is possibly the first report of the refolding of a protein in a strongly denaturing condition (in the presence of 10 M urea). The relative contributions of the hydrophobic and the electrostatic interactions of the surfactants with cytochrome c have been determined from the formation of the molten globule species from the acid-induced unfolded protein in the presence of SDS or lauryl maltoside.  相似文献   

14.
Hodsdon ME  Frieden C 《Biochemistry》2001,40(3):732-742
The intestinal fatty acid binding protein is composed of two beta-sheets surrounding a large interior cavity. There is a small helical domain associated with the portal for entry of the ligand into the cavity. Denaturation of the protein has been monitored in a residue-specific manner by collecting a series of two-dimensional (1)H-(15)N heteronuclear single-quantum coherence (HSQC) NMR spectra from 0 to 6.5 M urea under equilibrium conditions. In addition, rates for hydrogen-deuterium exchange have been measured as a function of denaturant concentration. Residual, native-like structure persists around hydrophobic clusters at very high urea concentrations. This residual structure (reflecting only about 2-7% persistence of native-like structure) involves the turns between beta-strands and between the two short helices. If this persistence is assumed to reflect transient native-like structure in these regions of the polypeptide chain, these sites may serve as nucleation sites for folding. The data obtained at different urea concentrations are then analyzed on the basis of peak intensities relative to the intensities in the absence of urea reflecting the extent of secondary structure formation. At urea concentrations somewhat below 6.5 M, specific hydrophobic residues in the C-terminal beta-sheet interact and two strands, the D and E strands in the N-terminal beta-sheet, are stabilized. These latter strands surround one of the turns showing residual structure. With decreasing urea concentrations, the remaining strands are stabilized in a specific order. The early strand stabilization appears to trigger the formation of the remainder of the C-terminal beta-sheet. At low urea concentrations, hydrogen bonds are formed. A pathway is proposed on the basis of the data describing the early, intermediate, and late folding steps for this almost all beta-sheet protein. The data also show that there are regions of the protein which appear to act in a concerted manner at intermediate steps in refolding.  相似文献   

15.
Two different types of insoluble, non-native aggregates of recombinant human growth hormone were formed by agitation in buffer or buffer containing 0.75 m guanidine HCl (GdnHCl) and characterized by infrared and second derivative UV spectroscopies. The degree of secondary structural perturbation was greater in the aggregates formed in 0.75 m GdnHCl. Both aggregate types were dissolved and refolded using high hydrostatic pressures in combination with either elevated temperature or non-denaturing levels of guanidine HCl or urea. The effects of a range of temperature, pressure, and chaotrope concentrations were tested and led to optimal conditions that approached 100% yield of native protein. The aggregates formed in 0.75 m GdnHCl required higher concentrations of urea or GdnHCl, or higher temperature or pressure for a yield equivalent to that for aggregates formed in buffer alone. Investigation of the effects of pressure, temperature, and chaotrope on unfolding of rhGH documented that under conditions used for optimal high pressure disaggregation and refolding, the native state is greatly favored thermodynamically (e.g. 25 kJ/mol at 2000 bar and 0.75 m GdnHCl). Dissolution of aggregates under pressure is a kinetically limited process. Comparison of refolding yields in GdnHCl and urea solutions suggest that pressure effects on electrostatic interactions do not dominate pressure effects on disaggregation. We suggest that non-native hydrogen bonds between protein molecules within aggregates of recombinant human growth hormone are responsible for the rate-limiting kinetic barrier in pressure-induced disaggregation.  相似文献   

16.
Very little is known about how protein structure evolves during the polypeptide chain elongation that accompanies cotranslational protein folding. This in vitro model study is aimed at probing how conformational space evolves for purified N-terminal polypeptides of increasing length. These peptides are derived from the sequence of an all-alpha-helical single domain protein, Sperm whale apomyoglobin (apoMb). Even at short chain lengths, ordered structure is found. The nature of this structure is strongly chain length dependent. At relatively short lengths, a predominantly non-native beta-sheet conformation is present, and self-associated amyloid-like species are generated. As chain length increases, alpha-helix progressively takes over, and it replaces the beta-strand. The observed trends correlate with the specific fraction of solvent-accessible nonpolar surface area present at different chain lengths. The C-terminal portion of the chain plays an important role by promoting a large and cooperative overall increase in helical content and by consolidating the monomeric association state of the full-length protein. Thus, a native-like energy landscape develops late during apoMb chain elongation. This effect may provide an important driving force for chain expulsion from the ribosome and promote nearly-posttranslational folding of single domain proteins in the cell. Nature has been able to overcome the above intrinsic misfolding trends by modulating the composition of the intracellular environment. An imbalance or improper functioning by the above modulating factors during translation may play a role in misfolding-driven intracellular disorders.  相似文献   

17.
Staphylococcal nuclease forms three different partially-folded intermediates at low pH in the presence of low to moderate concentration of anions, differing in the amount of secondary structure, globularity, stability, and compactness. Although these intermediates are monomeric at low protein concentration (< or =0.25 mg/mL), increasing concentrations of protein result in the formation of dimers and soluble oligomers, ultimately leading to larger insoluble aggregates. Unexpectedly, increasing protein concentration not only led to association, but also to increased structure of the intermediates. The secondary structure, stability, and globularity of the two less-ordered partially-folded intermediates (A1 and A2) were substantially increased upon association, suggesting that aggregation induces structure. An excellent correlation was found between degree of association and amount of structure measured by different techniques, including circular dichroism, fluorescence, Fourier transform infrared spectroscopy (FTIR), and small-angle X-ray scattering. The associated states were also substantially more stable toward urea denaturation than the monomeric forms. A mechanism is proposed, in which the observed association of monomeric intermediates involves intermolecular interactions which correspond to those found intramolecularly in normal folding to the native state.  相似文献   

18.
Factors governing the folding pathways and the stability of apomyoglobin have been examined by replacing the distal histidine at position 64 with phenylalanine (H64F). Acid and urea-induced unfolding experiments using CD and fluorescence techniques reveal that the mutant H64F apoprotein is significantly more stable than wild-type apoMb. Kinetic refolding studies of this variant also show a significant difference from wild-type apoMb. The amplitude of the burst phase ellipticity in stopped-flow CD measurements is increased over that of wild-type, an indication that the secondary structure content of the earliest kinetic intermediate is greater in the mutant than in the wild-type protein. In addition, the overall rate of folding is markedly increased. Hydrogen exchange pulse labeling was used to establish the structure of the initial intermediate formed during the burst phase of the H64F mutant. NMR analysis of the samples obtained at different refolding times indicates that the burst phase intermediate contains a stabilized E helix as well as the A, G, and H helices previously found in the wild-type kinetic intermediate. Replacement of the polar distal histidine residue with a nonpolar residue of similar size and shape appears to stabilize the E helix in the early stages of folding due to improved hydrophobic packing. The presence of a hydrophilic histidine at position 64 thus exacts a price in the stability and folding efficiency of the apoprotein, but this residue is nevertheless highly conserved among myoglobins due to its importance in function.  相似文献   

19.
Reduced denatured lysozyme has been oxidised and refolded at pH values close to neutral in an efficient way by dilution from buffers containing 8.0 M urea, and refolding intermediates were separated by reverse-phase HPLC at pH 2. By using peptic digestion in combination with high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem MS/MS the dominant intermediate was identified to be des-[76-94]. This species has three of the four native disulphide bonds, but lacks the Cys76-Cys94 disulphide bond which connects the two folding domains in the native protein. Characterisation of des-[76-94] by 2D1H NMR shows that it has a highly native-like structure. This provides an explanation for the accumulation of this species during refolding as direct oxidation to the fully native protein will be restricted by the burial of Cys94 in the protein interior.  相似文献   

20.
Extensive analysis of accurate quench-flow hydrogen exchange results indicates that the burst phase kinetic intermediate in the folding of apomyoglobin (apoMb) from urea is structurally heterogeneous. The structural variability is associated with the partial folding of the E helix during the burst phase (<6.4ms) of the folding process. Analysis of the effects of exchange-out of amide proton labels during the labeling pulse ( approximately pH 10) of the quench-flow process indicates that three of the amide protons in the E helix are in fact largely protected in the burst phase of folding, while the remainder of the E helix has a substantial complement of amide protons that show biphasic kinetics, i.e. are protected partly during the burst phase and partly during the slow phase of folding. The locations of these amide protons can be used to map the sites of structural heterogeneity in the kinetic molten globule. These sites include, besides the E helix, the ends of the A and B helices and part of the C helix. Our results give significant support to the hypothesis that the kinetic molten globule intermediate of apoMb is native-like.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号