首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic activity of p56lck is repressed by phosphorylation of a conserved carboxy-terminal tyrosine residue (tyrosine 505). Accumulating data show that this phosphorylation is mediated by the tyrosine protein kinase p50csk and that it is reversed by the transmembrane tyrosine protein phosphatase CD45. Recent studies have indicated that dephosphorylation of tyrosine 505 in resting T cells is necessary for the initiation of antigen-induced T-cell activation. To better understand this phenomenon, we have characterized the factors regulating tyrosine 505 phosphorylation in an antigen-specific T-cell line (BI-141). As is the case for other T-cell lines, Lck molecules from unstimulated BI-141 cells exhibited a pronounced dephosphorylation of the inhibitory carboxyl-terminal tyrosine. This state could be corrected by incubation of cells with the tyrosine protein phosphatase inhibitor pervanadate, suggesting that it reflected the unrestricted action of tyrosine protein phosphatases. In structure-function analyses, mutation of the site of Lck myristylation (glycine 2) partially restored phosphorylation at tyrosine 505 in BI-141 cells. Since the myristylation-defective mutant also failed to stably associate with cellular membranes, this effect was most probably the consequence of removal of p56lck from the vicinity of membrane phosphatases like CD45. Deletion of the unique domain of Lck, or its replacement by the equivalent sequence from p59fyn, also increased the extent of tyrosine 505 phosphorylation in vivo. This effect was unrelated to changes in Lck membrane association and therefore was potentially related to defects in crucial protein-protein interactions at the membrane. In contrast, deletion of the SH3 or SH2 domain, or mutation of the phosphotransfer motif (lysine 273) or the site of autophosphorylation (tyrosine 394), had no impact on phosphate occupancy at tyrosine 505. In combination, these results indicated that the hypophosphorylation of the inhibitory tyrosine of p56(lck) in T lymphocytes is likely the result of the predominant action of tyrosine protein phosphatases. Moreover, they showed that both the amino-terminal myristylation signal and the unique domain of p56(lck) play critical roles in this process.  相似文献   

2.
Mutation of the major site of in vivo tyrosine phosphorylation of p56lck (tyrosine 505) to a phenylalanine constitutively enhances the p56lck-associated tyrosine-specific protein kinase activity. The mutant polypeptide is extensively phosphorylated in vivo at the site of in vitro Lck autophosphorylation (tyrosine 394) and is capable of oncogenic transformation of rodent fibroblasts. These observations have suggested that phosphorylation at Tyr-505 down regulates the tyrosine protein kinase activity of p56lck. Herein we have attempted to examine whether other posttranslational modifications may be involved in regulation of the enzymatic function of p56lck. The results indicated that activation of p56lck by mutation of Tyr-505 was prevented by a tyrosine-to-phenylalanine substitution at position 394. Furthermore, activation of p56lck by mutation of the carboxy-terminal tyrosine residue was rendered less efficient by substituting an alanine residue for the amino-terminal glycine. This second mutation prevented p56lck myristylation and stable membrane association and was associated with decreased in vivo phosphorylation at Tyr-394. Taken together, these findings imply that lack of phosphorylation at Tyr-505 may be insufficient for enhancement of the p56lck-associated tyrosine protein kinase activity. Our data suggest that activation of p56lck may be dependent on phosphorylation at Tyr-394 and that this process may be facilitated by myristylation, membrane association, or both.  相似文献   

3.
To understand the mechanism(s) by which p56lck participates in T-cell receptor (TCR) signalling, we have examined the effects of mutations in known regulatory domains of p56lck on the ability of F505 p56lck to enhance the responsiveness of an antigen-specific murine T-cell hybridoma. A mutation of the amino-terminal site of myristylation (glycine 2), which prevents stable association of p56lck with the plasma membrane, completely abolished the ability of F505 p56lck to enhance TCR-induced tyrosine protein phosphorylation. Alteration of the major site of in vitro autophosphorylation, tyrosine 394, to phenylalanine diminished the enhancement of TCR-induced tyrosine protein phosphorylation by F505 p56lck. Such a finding is consistent with the previous demonstration that this site is required for full activation of p56lck by mutation of tyrosine 505. Strikingly, deletion of the noncatalytic Src homology domain 2, but not of the Src homology domain 3, markedly reduced the improvement of TCR-induced tyrosine protein phosphorylation by F505 Lck. Additional studies revealed that all the mutations tested, including deletion of the Src homology 3 region, abrogated the enhancement of antigen-triggered interleukin-2 production by F505 p56lck, thus implying more stringent requirements for augmentation of antigen responsiveness by F505 Lck. Finally, it was also observed that expression of F505 p56lck greatly increased TCR-induced tyrosine phosphorylation of phospholipase C-gamma 1, raising the possibility that phospholipase C-gamma 1 may be a substrate for p56lck in T lymphocytes. Our results indicate that p56lck regulates T-cell antigen receptor signalling through a complex process requiring multiple distinct structural domains of the protein.  相似文献   

4.
Previous studies from our laboratory have shown that the cytosolic tyrosine protein kinase p50csk is involved in the negative regulation of T-cell activation (L.M. L. Chow, M. Fournel, D. Davidson, and A. Veillette, Nature [London] 365:156-160, 1993). This function most probably reflects the ability of Csk to phosphorylate the inhibitory carboxy-terminal tyrosine of p56lck and p59fynT, two Src-related enzymes abundantly expressed in T lymphocytes. Herein, we have attempted to better understand the mechanisms by which Csk participates in the inhibitory phase of T-cell receptor signalling. Our results demonstrated that the Src homology 3 (SH3) and SH2 domains of p50csk are crucial for its negative impact on T-cell receptor-mediated signals. As these two sequences were not essential for phosphorylation of the carboxy-terminal tyrosine of a Src-like product in yeast cells, we postulated that they mediate protein-protein interactions allowing the recruitment of p50csk in the vicinity of activated Lck and/or FynT in T cells. In complementary studies, it was observed that linkage of a constitutive membrane targeting signal to the amino terminus of Csk rescued the deleterious impact of a point mutation in the SH2 domain of p50csk. This observation suggested that the SH2 sequence is in part necessary to translocate p50csk from the cytoplasm to the plasma membrane, where Src-related enzymes are located. Nevertheless, constitutive membrane localization was unable to correct the effect of complete deletion of the SH3 or SH2 sequence, implying that these domains provide additional functions necessary for the biological activity of p50csk.  相似文献   

5.
Accumulating data suggest that the CD4 T-cell surface antigen transduces an independent intracellular signal during antigen-mediated T-cell activation. CD4 is physically associated with the internal membrane tyrosine protein kinase p56lck and can mediate, after antibody-mediated cross-linking, the rapid enzymatic activation of Lck, implying that CD4 signalling may involve changes in tyrosine protein phosphorylation. In this report, we describe that cross-linking of CD4 results in a series of rapid changes in intracellular tyrosine protein phosphorylation. The most prominent CD4-induced tyrosine phosphorylation change involved p56lck, which became extensively phosphorylated on the carboxy-terminal tyrosine residue 505 and, to a lesser extent, lymphocytes can transduce an intracellular signal resulting in tyrosine protein phosphorylation and strongly suggest that this property of CD4 is mediated through p56lck.  相似文献   

6.
The lck proto-oncogene encodes a lymphocyte-specific member of the src family of protein tyrosine kinases. Here we demonstrate that pp56lck is phosphorylated in vivo at a carboxy-terminal tyrosine residue (Tyr-505) analogous to Tyr-527 of pp60c-src. Substitution of phenylalanine for tyrosine at this position resulted in increased phosphorylation of a second tyrosine residue (Tyr-394) and was associated with an increase in apparent kinase activity. In addition, this single point mutation unmasked the oncogenic potential of pp56lck in NIH 3T3 cell transformation assays. Viewed in the context of similar results obtained with pp60c-src, it is likely that the enzymatic activity and transforming ability of all src-family protein tyrosine kinases can be regulated by carboxy-terminal tyrosine phosphorylation. We further demonstrate that overexpression of pp56lck in the murine T-cell lymphoma LSTRA as a result of a retroviral insertion event produces a kinase protein that despite wild-type primary structure is nevertheless hypophosphorylated at Tyr-505. Thus, control of normal growth in this lymphoid cell line may have been abrogated through acquisition of a posttranslationally activated version of pp56lck.  相似文献   

7.
Mice deficient in the transmembrane protein tyrosine phosphatase CD45 exhibit a block in thymocyte development. To determine whether the block in thymocyte development was due to the inability to dephosphorylate the inhibitory phosphorylation site (Y505) in p56(lck) (Lck), we generated CD45-deficient mice that express transgenes for the Lck Y505F mutation and the DO11.10 T-cell antigen receptor (TCR). CD4 single-positive T cells developed and accumulated in the periphery. Treatment with antigen resulted in thymocyte apoptosis and the loss of transgenic-TCR-bearing cells. Peripheral CD45-deficient T cells from the mice expressing both transgenes responded to antigen by increasing CD69 expression, interleukin-2 production, and proliferation. These results indicate that thymocyte development requires the dephosphorylation of the inhibitory site in Lck by CD45.  相似文献   

8.
p56lck, a member of the src family of cytoplasmic tyrosine kinases, is expressed predominantly in T cells where it associates with the T-cell surface molecules CD4 and CD8. Mutants of CD4 and CD8 that have lost the ability to associate with p56lck no longer enhance antigen-induced T-cell activation. This suggests that p56lck plays an important role during T-cell activation. In an effort to understand the function of p56lck in T cells, a constitutively activated lck gene (F505lck) was introduced into T-helper hybridoma cell lines by retroviral infection. In four T-cell lines we examined, the activated lck protein stimulated interleukin-2 (IL-2) production, a hallmark of T-cell activation, in the absence of antigenic stimulation. In addition, a marked increase in antigen-independent IL-2 production was apparent when T cells infected with a temperature-sensitive F505lck were shifted to the permissive temperature. Only one cell line expressing F505lck exhibited increased sensitivity to antigenic stimulation. The SH3 domain of p56lck was dispensable for the induction of antigen-independent IL-2 production. In contrast, deletion of the majority of the SH2 domain of p56F505lck reduced its ability to induce spontaneous IL-2 production markedly. Activated p60c-src also induced antigen-independent IL-2 production, whereas two other tyrosine kinases, v-abl and the platelet-derived growth factor receptor, did not. Tyrosine phosphorylation of a 70-kDa cellular protein was observed after cross-linking of CD4 in T cells expressing F505lck but not in cells expressing F527src.  相似文献   

9.
Src family kinases are suppressed by a "tail bite" mechanism, in which the binding of a phosphorylated tyrosine in the C terminus of the protein to the Src homology (SH) 2 domain in the N-terminal half of the protein forces the catalytic domain into an inactive conformation stabilized by an additional SH3 interaction. In addition to this intramolecular suppressive function, the SH2 domain also mediates intermolecular interactions, which are crucial for T cell antigen receptor (TCR) signaling. To better understand the relative importance of these two opposite functions of the SH2 domain of the Src family kinase Lck in TCR signaling, we created three mutants of Lck in which the intramolecular binding of the C terminus to the SH2 domain was strengthened. The mutants differed from wild-type Lck only in one to three amino acid residues following the negative regulatory tyrosine 505, which was normally phosphorylated by Csk and dephosphorylated by CD45 in the mutants. In the Lck-negative JCaM1 cell line, the Lck mutants had a much reduced ability to transduce signals from the TCR in a manner that directly correlated with SH2-Tyr(P)(505) affinity. The mutant with the strongest tail bite was completely unable to support any ZAP-70 phosphorylation, mitogen-activated protein kinase activation, or downstream gene activation in response to TCR ligation, whereas other mutants had intermediate abilities. Lipid raft targeting was not affected. We conclude that Lck is regulated by a weak tail bite to allow for its activation and service in TCR signaling, perhaps through a competitive SH2 engagement mechanism.  相似文献   

10.
The lymphocyte-specific, nonreceptor protein tyrosine kinase Lck has been purified from an Escherichia coli expression system using a monoclonal antibody column followed by dye-affinity chromatography. Polyacrylamide gel electrophoretic analysis of purified protein revealed a single 56 kDa band, indicating that recombinant Lck was purified to near-homogeneity. The purified enzyme displayed tyrosine kinase activity as measured by both autophosphorylation and phosphorylation of exogenous substrates. Biochemical properties including protein phosphorylation and kinetic characteristics of the enzyme have been assessed. Peptide map analysis revealed that bacterially expressed Lck is phosphorylated predominantly on the autophosphorylation site (tyrosine-394), which is characteristic for activated protein tyrosine kinases. Indeed, we found that the recombinant enzyme is approximately fivefold more active than Lck from resting T cells, which is extensively phosphorylated at the regulatory carboxy-terminal tyrosine residue (tyrosine-505). Thus, we have overproduced recombinant human Lck in E. coli and developed a simple two-step purification procedure which yields highly active enzyme. This will enable the identification and characterization of potential regulators and targets of Lck and thereby greatly facilitate studies which will clarify its role in T cell signal transduction. © 1994 Wiley-Liss, Inc.  相似文献   

11.
The lymphocyte-specific tyrosine protein kinase p56lck is abundantly expressed in L3T4+ (CD4+) and Lyt-2+ (CD8+) T-lymphocytes, where it is predominantly phosphorylated in vivo on the carboxy-terminal tyrosine residue 505 (Y-505). Upon exposure to activating signals (mitogenic lectins, antibodies to the T-cell receptor), the p56lck expressed in normal cloned murine T-cells is modified into a product which migrates at approximately 59 kilodaltons on sodium dodecyl sulfate-polyacrylamide gels and which possesses several amino-terminal serine phosphorylations. The changes in both mobility and amino-terminal phosphorylation can be reproduced by known activators of protein kinase C (4 alpha-phorbol 12 beta-myristate, dioctanoylglycerol), suggesting that this signal transduction pathway (or related pathways) mediates at least part of these events. Interestingly, agents raising intracellular calcium (such as A23187) cause the appearance of several of these amino-terminal phosphorylation changes but do not cause the pronounced shift in electrophoretic mobility. These data suggest that at least two serine kinase systems are implicated in the alterations of p56lck associated with T-cell activation and that the lck gene product plays a critical role in normal T-cell physiology.  相似文献   

12.
Protein tyrosine kinases participate in the transduction and modulation of signals that regulate proliferation and differentiation of cells. Excessive or deregulated protein tyrosine kinase activity can cause malignant transformation. The catalytic activity of the T cell protein tyrosine kinase p56lck is normally suppressed by phosphorylation of a carboxyl-terminal tyrosine, Tyr-505, by another cellular protein tyrosine kinase. Here we characterize a human cytosolic 50 kDa protein tyrosine kinase, p50csk, which specifically phosphorylates Tyr-505 of p56lck and a synthetic peptide containing this site. Phosphorylation of Tyr-505 suppressed the catalytic activity of p56lck. We suggest that p50csk negatively regulates p56lck, and perhaps other cellular src family kinases.  相似文献   

13.
The p56lck and p59fyn protein tyrosine kinases are important signal transmission elements in the activation of mature T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex. The lack of either kinase results in deficient early signaling events, and pharmacological agents that block tyrosine phosphorylation prevent T-cell activation altogether. After triggering of the TCR/CD3 complex, both kinases are moderately activated and begin to phosphorylate cellular substrates, but the molecular mechanisms responsible for these changes have remained unclear. We recently found that the p72syk protein tyrosine kinase is physically associated with the TCR/CD3 complex and is rapidly tyrosine phosphorylated and activated by receptor triggering also in T cells lacking p56lck. Here we examine the regulation of p72syk and its interaction with p56lck in transfected COS-1 cells. p72syk was catalytically active and heavily phosphorylated on its putative autophosphorylation site, Tyr-518/519. Mutation of these residues to phenylalanines abolished its activity in vitro and toward cellular substrates in vivo and reduced its tyrosine phosphorylation in intact cells by approximately 90%. Coexpression of lck did not alter the catalytic activity of p72syk, but the expressed p56lck was much more active in the presence of p72syk than when expressed alone. This activation was also seen as increased phosphorylation of cellular proteins. Concomitantly, p56lck was phosphorylated at Tyr-192 in its SH2 domain, and a Phe-192 mutant p56lck was no longer phosphorylated by p72syk. Phosphate was also detected in p56lck at Tyr-192 in lymphoid cells. These findings suggest that p56lck is positively regulated by the p72syk kinase.  相似文献   

14.
The Csk tyrosine kinase negatively regulates the Src family kinases Lck and Fyn in T cells. Engagement of the T-cell antigen receptor results in a removal of Csk from the lipid raft-associated transmembrane protein PAG/Cbp. Instead, Csk becomes associated with an approximately 72-kDa tyrosine-phosphorylated protein, which we identify here as G3BP, a phosphoprotein reported to bind the SH3 domain of Ras GTPase-activating protein. G3BP reduced the ability of Csk to phosphorylate Lck at Y505 by decreasing the amount of Csk in lipid rafts. As a consequence, G3BP augmented T-cell activation as measured by interleukin-2 gene activation. Conversely, elimination of endogenous G3BP by RNA interference increased Lck Y505 phosphorylation and reduced TCR signaling. In antigen-specific T cells, endogenous G3BP moved into a intracellular location adjacent to the immune synapse, but deeper inside the cell, upon antigen recognition. Csk colocalization with G3BP occurred in this "parasynaptic" location. We conclude that G3BP is a new player in T-cell-antigen receptor signaling and acts to reduce the amount of Csk in the immune synapse.  相似文献   

15.
p56lck, a lymphocyte-specific tyrosine protein kinase, binds to the cytoplasmic tails of the T-cell surface molecules CD4 and CD8. Cross-linking of CD4 expressed on the surface of murine thymocytes, splenocytes, and CD4+ T-cell lines induced tyrosine phosphorylation of p56lck dramatically. Cross-linking of CD8 stimulated tyrosine phosphorylation of p56lck strongly in murine L3 and GA4 cells, slightly in splenocytes, but not detectably in thymocytes. Differing effects of cross-linking on in vitro tyrosine kinase activity of p56lck were observed. An increase in the in vitro kinase activity of p56lck, when assayed with [Val5]-angiotensin II as an exogenous substrate, was found to accompany cross-linking of CD4 in three cell lines. No stimulation of the in vitro kinase activity, however, was observed after cross-linking of CD8 in L3 cells. The phosphorylation of p56lck at Tyr-394, the autophosphorylation site, was stimulated by cross-linking in all cell lines examined. Tyr-394 was the predominant site of increased tyrosine phosphorylation in two leukemic cell lines. In the other two cell lines, the phosphorylation of both Tyr-394 and an inhibitory site, Tyr-505, was found to increase. In contrast to cross-linking with antibodies, no striking increase in the tyrosine phosphorylation of p56lck was stimulated by antigenic stimulation. Therefore, the effect of antibody-induced aggregation of CD4 and CD8 on the tyrosine phosphorylation of p56lck differs, at least quantitatively, from what occurs during antigen-induced T-cell activation.  相似文献   

16.
Many of the Src-like tyrosine kinases are thought to participate in multiprotein complexes that modulate transmembrane signalling through tyrosine phosphorylation. We have used in vitro binding studies employing bacterially expressed glutathione S-transferase-p56lck fusion proteins and cell extracts to map regions on p56lck that are involved in binding to phosphatidylinositol 3'-kinase (PI3K). Deletions within the SH3 domain of p56lck abolished binding of PI3K activity from T-cell lysates, whereas deletion of the SH2 domain caused only a slight reduction in the level of PI3K activity bound to p56lck sequences. The binding of PI3K from T-cell extracts to p56lck was not blocked by antiphosphotyrosine antibodies, but p56lck-bound PI3K activity was sensitive to phosphatase treatment. The SH3 domain of p56lck also bound the majority of PI3K activity from uninfected chicken embryo fibroblasts. However, a drastically different binding specificity was observed with use of extracts of Rous sarcoma virus v-src-transformed cells, in which the majority of PI3K activity bound to the SH2 domain of p56lck in a phosphotyrosine-dependent manner. These results suggest that are two modes of PI3K binding to p56lck, and presumably to other Src-like tyrosine kinases. In one mode, PI3K from T cells or uninfected chicken embryo fibroblasts binds predominantly to the SH3 domain of p56lck. In the other mode, involving PI3K from Rous sarcoma virus-transformed cells, binding is largely phosphotyrosine dependent and requires the SH2 domain of p56lck.  相似文献   

17.
Biochemical studies have demonstrated that phosphorylation of lymphocyte cell kinase (p56(lck) ) is crucial for activation of signaling cascades following T cell receptor (TCR) stimulation. However, whether phosphorylation/dephosphorylation of the activating or inhibitory tyrosine residues occurs upon activation is controversial. Recent advances in intracellular staining of phospho-epitopes and cytometric analysis, requiring few cells, have opened up novel avenues for the field of immunological signaling. Here, we assessed p56(lck) phosphorylation, using a multiparameter flow-cytometric based detection method following T cell stimulation. Fixation and permeabilization in conjunction with zenon labeling technology and/or fluorescently labeled antibodies against total p56(lck) or cognate phospho-tyrosine (pY) residues or surface receptors were used for detection purposes. Our observations showed that activation of Jurkat or primary human T cells using H(2) O(2) or TCR-induced stimulation led to simultaneous phosphorylation of the activating tyrosine residue, Y394 and the inhibitory tyrosine residue, Y505 of p56(lck) . This was followed by downstream calcium flux and expression of T cell activation markers; CD69 and CD40 ligand (CD40L). However, the extent of measurable activation readouts depended on the optimal stimulatory conditions (temperature and/or stimuli combinations). Treatment of cells with a p56(lck) -specific inhibitor, PP2, abolished phosphorylation at either residue in a dose-dependent manner. Taken together, these observations show that TCR-induced stimulation of T cells led to simultaneous phosphorylation of p56(lck) residues. This implies that dephosphorylation of Y505 is not crucial for p56(lck) activity. Also, it is clear that cytometric analysis provides for a rapid, sensitive, and quantitative method to supplement biochemical studies on p56(lck) signaling pathways in T cells at single cell level. ? 2012 International Society for Advancement of Cytometry.  相似文献   

18.
Engagement of interleukin-2 (IL-2) mediates the heterodimeridation of the common beta chain (beta(c)) and common gamma chain (gamma(c)) of the IL-2 receptor (IL-2R). This is sufficient and necessary for receptor activation and signal transduction. It is generally held that the IL-2R is activated by the trans-activity of the protein tyrosine kinases (PTKs) Jak1 and Jak3 associated with beta(c) and gamma(c) respectively. Transduction of proliferative signals requires Jak3 activity. A Jak3 independent signalling pathway involving p56(lck), generating anti-apoptotic signals, can be observed and requires the PROX domain of gamma(c). p56(lck) can be activated by dephosphorylation of an inhibitory carboxyl terminal phosphorylated tyrosine residue (Y505). We propose that this is mediated by a PROX domain associated protein tyrosine phosphatase (PTP). Activation of p56(lck) alone is insufficient for transduction of proliferative signals and thus works in concert with Jak3 mediated receptor activation. This indicates that both gamma(c) domains are vital for signal transduction.  相似文献   

19.
《The Journal of cell biology》1996,135(6):1515-1523
p56lck (Lck) is a lymphoid-specific Src family tyrosine kinase that is critical for T-cell development and activation. Lck is also a membrane protein, and approximately half of the membrane-associated Lck is associated with a glycolipid-enriched membrane (GEM) fraction that is resistant to solubilization by Triton X-100 (TX-100). To compare the membrane-associated Lck present in the GEM and TX-100-soluble fractions of Jurkat cells, Lck from each fraction was immunoblotted with antibody to phosphotyrosine. Lck in the GEM fraction was found to be hyperphosphorylated on tyrosine, and this correlated with a lower kinase specific activity relative to the TX-100-soluble Lck. Peptide mapping and phosphatase diagests showed that the hyperphosphorylation and lower kinase activity of GEM-associated Lck was due to phosphorylation of the regulatory COOH-terminal Tyr505. In addition, we determined that the membrane-bound tyrosine phosphatase CD45 was absent from the GEM fraction. Cells lacking CD45 showed identical phosphorylation of Lck in GEM and TX-100-soluble membranes. We propose that the GEM fraction represents a specific membrane domain present in T-cells, and that the hyperphosphorylation of tyrosine and lower kinase activity of GEM-associated Lck is due to exclusion of CD45 from these domains. Lck associated with the GEM domains may therefore consitute a reservoir of enzyme that can be readily activated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号