首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The homogeneous rat liver F1-ATPase preparation of Catterall and Pedersen (Catterall, W.A., and Pedersen, P.L. (1971) J. Biol. Chem. 246, 4987-4994) has been crystallized from a solution containing phosphate and ATP by precipitation with ammonium sulfate. Most of the resultant crystals are cubes of approximately 0.3 to 0.6 mm per side. X-ray precession photographs show that the crystals are rhombohedral, space group R32 (D37 NO155) with hexagonal cell dimensions a = 148 A, c = 368 A. The molecular weight of the asymmetric unit of the crystals is 190,000 or about half the molecular weight (384,000) of the rat liver enzyme indicating that the crystallographic 2-fold axes of symmetry coincide with a molecular symmetry axis. The crystals diffract to at least 3.5 A and therefore this is the first report of an ATPase preparation in which crystals suitable for x-ray analysis have been obtained.  相似文献   

2.
We are currently investigating the biochemical and structural properties of both chitin degrading enzymes chitinase and chitobiase from Serratia marcescens. Previously we have reported the first crystallization and characterization of chitinase crystals (Vorgias et al., 1992). In this communication we present the first crystallization of chitobiase. The protein was synthesized in Escherichia coli and purified to homogeneity using cation exchange chromatography and fast protein liquid chromatography. The crystals have the shape of small prisms and the space group is P2(1) with beta = 101.0 degrees and unit cell dimensions a = 63.2 A, b = 133.2 A, c = 55.1 A. They diffract X-rays to about 2.5 A resolution and are suitable for three-dimensional structural analysis.  相似文献   

3.
Crystals of glutathione-S-transferase (GST)-fused protein containing the DNA-binding domain of DNA replication-related element-binding factor, DREF, were obtained under crystallization conditions similar to those for GST. Preliminary X-ray crystallographic analysis revealed that crystals of the GST-fused protein belong to space group P6(1)22 or P6(5)22 with unit cell dimensions a = b = 140.4 A, c = 93.5 A and gamma = 120 degrees, having one molecule in the crystallographic asymmetric unit. The crystals diffract to 2.5 A resolution. The cell dimensions are related to those of GST crystals thus far reported. Crystallization of the DNA-binding domain that was cleaved from the fused protein by thrombin was also carried out using several methods under numerous conditions, but efforts to produce well-ordered large crystals were unsuccessful. A possible application of GST-fusion proteins for small target proteins or domains to obtain crystals suitable for X-ray structure determination is proposed.  相似文献   

4.
The amino terminal half of human lactoferrin (LfN) produced from transfected baby hamster kidney cells has been crystallized in its iron-saturated and iron-free forms. The crystals of glycosylated LfN and deglycosylated LfN are monoclinic, space group C2, with cell dimensions a = 133.0 A, b = 58.3 A, c = 58.3 A, alpha = 90.0 degrees, beta = 114.7 degrees, gamma = 90.0 degrees, and one molecule per asymmetric unit. Crystals of apo LfN have also been prepared using deglycosylated protein. These crystals are tetragonal, space group P4(1)2(1)2 (or P4(3)2(1)2), with cell dimensions of a = b = 58.4 A and c = 217.2 A and one molecule per asymmetric unit. Both the iron-saturated and the iron-free crystals are suitable for high resolution X-ray analysis.  相似文献   

5.
The chiA gene encoding for the chitinase enzyme from Serratia marcescens was efficiently overexpressed under the pL promoter and the enzyme was secreted into the growth medium. The chitinase was purified to homogeneity using affinity chromatography on a Phenyl-Sepharose column and the protein was successfully crystallized. The crystals are presently in the form of small needles in space group C222(1) and have unit cell dimensions a = 204(+/- 0.5) A, b = 134(+/- 0.5) A, c = 60(+/- 0.5) A. The crystals diffract X-rays to about 3 A resolution and are suitable for three-dimensional structural analysis.  相似文献   

6.
(1) A (K+ + H+)-ATPase preparation from porcine gastric mucosa is solubilized in sodium dodecyl sulfate, and is subjected to gel filtration. (2) A main subunit fraction is obtained, which is a protein carbohydrate lipid complex, containing 88% protein, 7% carbohydrate and 5% phospholipid. The Detailed composition of the protein and carbohydrate moieties are reported. (3) Sedimentation analysis of the subunit preparation, after detergent removal, reveals no heterogeneity, but the subunits readily undergo aggregation. (4) Acylation of the subunit preparation with citraconic anhydride causes a clear shift of the band obtained after SDS gel electrophoresis, but the absence of broadening and splitting of the band pleads against subunit heterogeneity. (5) Treatment of the subunit preparation with dansyl chloride indicates that the NH2 terminus is blocked, which favors the assumption of homogeneity of the protein. (6) Binding studies with concanavalin A indicate that at least 86% of the subunit preparation is composed of glycoprotein. (7) These findings, taken together, strongly suggest that there is a single subunit which is a glycoprotein and which represents the catalytic subunit of the enzyme. From sedimentation equilibrium analysis a molecular mass value of 119 kDa (S.E. 3, n = 6) is calculated for protein + carbohydrate and of 110 kDa (S.E. 3, N = 6) for protein only. (8) In combination with the molecular mass of 444 kDa (S. E. 10, n = 4) obtained for the intact enzyme by radiation inactivation we conclude that the enzyme appears to be composed of a homo-tetramer of catalytic subunits.  相似文献   

7.
(1) A (K+ + H+)-ATPase preparation from porcine gastric mucosa is solubilized in sodium dodecyl sulfate, and is subjected to gel filtration. (2) A main subunit fraction is obtained, which is a protein carbohydrate lipid complex, containing 88% protein, 7% carbohydrate and 5% phospholipid. The detailed composition of the protein and carbohydrate moieties are reported. (3) Sedimentation analysis of the subunit preparation, after detergent removal, reveals no heterogeneity, but the subunits readily undergo aggregation. (4) Acylation of the subunit preparation with citraconic anhydride causes a clear shift of the band obtained after SDS gel electrophoresis, but the absence of broadening and splitting of the band pleads against subunit heterogeneity. (5) Treatment of the subunit preparation with dansyl chloride indicates that the NH2 terminus is blocked, which favors the assumption of homogeneity of the protein. (6) Binding studies with concanavalin A indicate that at least 86% of the subunit preparation is composed of glycoprotein. (7) These findings, taken together, strongly suggest that there is a single subunit which is a glycoprotein and which represents the catalytic subunit of the enzyme. From sedimentation equilibrium analysis a molecular mass value of 119 kDa (S.E. 3, n = 6) is calculated for protein + carbohydrate and of 110 kDa (S.E. 3, n = 6) for protein only. (8) In combination with the molecular mass of 444 kDa (S.E. 10, n = 4) obtained for the intact enzyme by radiation inactivation we conclude that the enzyme appears to be composed of a homo-tetramer of catalytic subunits.  相似文献   

8.
Pyruvate kinase from rabbit muscle has been crystallized in a form suitable for high resolution X-ray analysis. Complexes of the enzyme with Mn2+ and either pyruvate or oxalate crystallize from solutions of polyethyl-eneglycol 8000 at pH 6.0. Crystals obtained from solutions of the complexes with pyruvate or oxalate appear isomorphous and belong to the triclinic space group P1. The crystals have unit cell dimensions a = 83.3(4) A, b = 109.4(6) A, c = 145.7 (7) A, alpha = 94.9 degrees, beta = 93.6 degrees, gamma = 112.2 degrees. These crystals diffract to better than 2.4 A resolution and are stable in the X-ray beam for at least 20 hr. Electron paramagnetic resonance measurements on a single crystal show that Mn2+ is bound to the crystalline protein.  相似文献   

9.
The 43 kDa N-terminal ATPase domain of the Escherichia coli DNA gyrase B protein has been purified from an over-expressing strain. This protein has been crystallized in two crystal forms, both in the presence of the non-hydrolysable ATP analogue 5'-adenylyl-beta,gamma-imidodiphosphate. The first crystal form is monoclinic P2(1), with cell dimensions a = 76 A, b = 88 A, c = 82 A, beta = 105.5 degrees, and diffracts to at least 2.7 A resolution using synchrotron radiation. Crystal density measurements suggest that there are two molecules in the asymmetric unit (Vm = 3.08 A3/Da). The second crystal form is orthorhombic C222(1), with cell dimensions a = 89.2 A, b = 143.1 A and c = 79.8 A. The crystals diffract to beyond 3 A and are stable for at least 100 hours when exposed to X-rays from a rotating anode source. The asymmetric unit of this crystal form appears to contain one molecule (Vm = 2.96 A3/Da). Data have already been collected to 5 A resolution from native crystals of this second form, and to 6 A resolution from three heavy-atom derivatives. Electron density maps calculated using phases obtained from these derivatives show features consistent with secondary structural elements, and have allowed the molecular boundary to be determined. Higher resolution native and derivative data are being collected.  相似文献   

10.
Phosphoporin is a pore-forming transmembrane protein that spans the outer membrane of Escherichia coli and facilitates the diffusion of phosphates and phosphorylated compounds. Phosphoporin has been crystallized in several different crystal forms, although only one appears to be suitable for X-ray analysis. These crystals, which are hexagonal plates, diffract X-rays to 3 A resolution and belong to the space-group P6(3)22, with unit cell dimensions a = b = 121 A and c = 111 A.  相似文献   

11.
A new large-scale purification method for benzoylformate decarboxylase from Pseudomonas putida has allowed us to undertake an X-ray crystallographic study of the enzyme. The previously observed instability of the enzyme was overcome by addition of 100 microM thiamine pyrophosphate to buffers used in the purification. The final enzyme preparation was more than 97% pure, as determined by denaturing gel electrophoresis and densitometry. The mobility of the enzyme on a gel filtration column indicates that it is a tetramer of 57-kDa subunits. Large, single crystals of benzoylformate decarboxylase were grown from solutions of buffered polyethylene glycol 400, pH 8.5. The crystals diffract to beyond 1.6 A resolution and are stable for days to X-ray radiation. Analysis of X-ray data from the crystals, along with the newly determined quaternary structure, identifies the space group as I222. The unit cell dimensions are a = 82 A, b = 97 A, c = 138 A. An average Vm value for the crystals is consistent with one subunit per asymmetric unit. The subunits of the tetramer must be arranged with tetrahedral 222 symmetry.  相似文献   

12.
The 64 x 10(3) Mr N-terminal breakage-reunion domain of the Escherichia coli DNA gyrase A protein was purified from an over-expressing strain. When complexed with the gyrase B protein, this truncated A protein has all of the enzymic properties of the full-length counterpart, although with reduced efficiency in some cases. The 64 x 10(3) Mr protein has been crystallized in several forms, a number of which were too small for crystallographic analysis. However, two forms grew to sufficient size for preliminary X-ray analysis. Both forms were tetragonal with a primitive lattice. One form (type I) had cell dimensions of a = b = 170 A, c = 145 A a space group of either P41212 (P43212) or P42212, and diffracted to 6 A resolution. The type II crystals had cell dimensions of a = b = 177 A, c = 175 A, a space group of P41212 (P43212) or P42212, and diffracted to at least 4.5 A resolution. Both crystal forms apparently contained four subunits (possibly a tetramer) in the asymmetric unit. We are attempting to increase the size and quality of these crystals.  相似文献   

13.
Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase distinctly different in various properties from the family of pepsin-type aspartic proteinases, and so far it remains unknown which residues participate in the catalysis of the enzyme and how the mechanism operates. The acid proteinase A was crystallized from an ammonium sulfate solution by the hanging-drop vapor diffusion method. The space group of the crystals was P2(1)2(1)2(1) with unit cell dimensions of a = 54.7 A, b = 70.4 A and c = 38.0 A. On the assumption that there is one enzyme molecule in the asymmetric unit, the calculated ratio of volume to unit protein mass (Vm) was 1.64 A3 per dalton. Diffraction data were collected up to a resolution higher than 1.5 A, using the Weissenberg camera for macromolecular crystallography with synchrotron radiation. The crystal of proteinase A is, therefore, suitable for the structural analysis with a high resolution.  相似文献   

14.
Crystals of the high-potential iron-sulfur protein from Ectothiorhodospira halophila strain BN 9626 have been grown from 3.4 to 3.5 M ammonium sulfate solutions at pH 7.5. The crystals belong to the space group P21 with unit cell dimensions of a = 60.00 A, b = 31.94 A, c = 40.27 A, and beta = 100.5 degrees. There are 2 molecules/asymmetric unit. The crystals diffract to at least 1.8 A, are stable in the x-ray beam, and are suitable for a high resolution x-ray crystallographic analysis.  相似文献   

15.
Porphobilinogen deaminase, the polymerase that catalyses the synthesis of preuroporphyrinogen, the linear tetrapyrrole precursor of uroporphyrinogen III, has been crystallized from sodium acetate buffer with polyethylene glycol 6000 as precipitant. The crystals are orthorhombic and the space group is P2(1)2(1)2, with unit cell dimensions a = 88.01 A, b = 75.86 A, c = 50.53 A and alpha = beta = gamma = 90 degrees, indicating a single molecule of 34 kDa in the asymmetric unit. The crystals grow to dimensions of 1 mm x 2 mm x 0.5 mm within two weeks in the dark and are stable in the X-ray beam for at least 40 hours. Diffraction data beyond 1.7 A resolution, observed with a synchrotron radiation source, indicate that a high resolution structure analysis is feasible.  相似文献   

16.
Crystals suitable for high resolution X-ray diffraction analysis have been reproducibly grown of the 24,000 Mr protein insect toxin from Bacillus thuringiensis. This protein, which demonstrates substantial insecticidal activity by inserting into phospholipid membranes, crystallizes as long square needles from polyethylene glycol 4000 at neutral pH. The crystals are of space group P4(1) and have cell dimensions of a = b = 33 A and c = 235 A, which suggests to us a predominantly helical motif for the protein's structure.  相似文献   

17.
Heterologous gene expression in either (1) the glycosylation-defective, mutant Chinese hamster ovary cell line, Lec3.2.8.1, or (2) the presence of the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin facilitates the trimming of N-linked glycans of glycoproteins to single N-acetylglucosamine (GlcNAc) residues with endoglycosidase H (endo H). Both approaches are somewhat inefficient, however, with as little as 12% of the total protein being rendered fully endo H-sensitive under these conditions. It is shown here that the combined effects of these approaches on the restriction of oligosaccharide processing are essentially additive, thereby allowing the production of glycoproteins that are essentially completely endo H-sensitive. The preparation of a soluble chimeric form of CD58, the ligand of the human T-cell surface recognition molecule CD2, illustrates the usefulness of the combined approach when expression levels are low or the deglycosylated protein is unstable at low pH. The endo H-treated chimera produced crystals of space group P3(1)21 or P3(2)21, and unit cell dimensions a = b = 116.4 A, c = 51.4 A alpha = beta = 90 degrees , gamma = 120 degrees , that diffract to a maximum resolution of 1.8 A.  相似文献   

18.
Human apo-lactoferrin in both native and deglycosylated forms has been purified, and crystals obtained by dialysis against low ionic strength buffer solutions. The crystals of native apo-lactoferrin are orthorhombic, space group P2(1)2(1)2(1) with cell dimensions a = 222.0 A, b = 115.6 A, c = 77.8 A and have two protein molecules per asymmetric unit. Two crystal forms of deglycosylated apo-lactoferrin have been obtained. One is orthorhombic, space group P2(1)2(1)2(1), with cell dimensions a = 152.1 A, b = 94.6 A, c = 55.8 A. The second is tetragonal, space group I4, with cell dimensions a = b = 189.4 A, c = 55.1 A. Both of the latter have only one molecule per asymmetric unit, and are suitable for high-resolution X-ray structure analysis.  相似文献   

19.
An orthorhombic form of single crystals of human plasma albumin, suitable for x-ray diffraction studies, has been grown with ammonium sulfate from protein solutions purified from fresh frozen single donor plasma as well as from a commercial sample of plasma albumin. The space group is P2(1)2(1)2 with 12 molecules in the unit cell. The cell dimensions are: a = 133.3 +/- 1.2 A, b = 274.8 +/- 3.3 A,, and c = 58.02 +/- 0.02 A.  相似文献   

20.
Two crystal forms of beta-galactosidase have been obtained from Escherichia coli. One crystal form is hexagonal space group P6222 or enantiomorph, with cell dimensions a = b = 154 A, c = 750 A. The second form is monoclinic, space group P21, with cell dimensions a = 107.9 A, b = 207.5 A, c = 509.9 A, beta = 94.7 degrees. The monoclinic form seems better suited to detailed structural analysis. The crystals are radiation-sensitive, but by using synchrotron radiation in conjunction with a long (400 mm) crystal-to-film distance it was possible to resolve the individual reflections. On the basis of crystal density measurements, there are four tetramers each of molecular weight 465,000 per asymmetric unit. The Patterson function strongly suggests that two of the tetramers are related to the other two by translation. The data are consistent with the tetramers having 222 point symmetry, but this is not proven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号