首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A homology search of the genome database of the filamentous fungus Trichoderma reesei identified a new T. reesei tyrosinase gene tyr2, encoding a protein with a putative signal sequence. The gene was overexpressed in the native host under the strong cbh1 promoter, and the tyrosinase enzyme was secreted into the culture supernatant. This is the first report on a secreted fungal tyrosinase. Expression of TYR2 in T. reesei resulted in good yields, corresponding to approximately 0.3 and 1 g.L(-1) tyrosinase in shake flask cultures and laboratory-scale batch fermentation, respectively. T. reesei TYR2 was purified with a three-step purification procedure, consisting of desalting by gel filtration, cation exchange chromatography and size exclusion chromatography. The purified TYR2 protein had a significantly lower molecular mass (43.2 kDa) than that calculated from the putative amino acid sequence (61.151 kDa). According to N-terminal and C-terminal structural analyses by fragmentation, chromatography, MS and peptide sequencing, the mature protein is processed from the C-terminus by a cleavage of a peptide fragment of about 20 kDa. The T. reesei TYR2 polypeptide chain was found to be glycosylated at its only potential N-glycosylation site, with a glycan consisting of two N-acetylglucosamines and five mannoses. Also, low amounts of shorter glycan forms were detected at this site. T. reesei TYR2 showed the highest activity and stability within a neutral and alkaline pH range, having an optimum at pH 9. T. reesei tyrosinase retained its activity well at 30 degrees C, whereas at higher temperatures the enzyme started to lose its activity relatively quickly. T. reesei TYR2 was active on both l-tyrosine and l-dopa, and it showed broad substrate specificity.  相似文献   

2.
Trichoderma reesei cellulases are important biocatalysts for a wide range of industrial applications that include the paper, feed, and textile industries. T. reesei endoglucanase 1 (egl1) was successfully expressed as an active and stable catalyst in Pichia pastoris for the first time. Codon optimization was applied to egl1 of T. reesei to enhance its expression levels in P. pastoris. When compared with the originally cloned egl1 gene of T. reesei, the synthetic codon optimized egl1 gene (egl1s) was expressed at a higher level in P. pastoris. Batch fermentations of both clones with the same copy number under controlled conditions indicated that codon optimized EGI enzyme activity increased to 1.24 fold after 72 h of methanol induction. Our research indicated that P. pastoris is a suitable host for cellulase production.  相似文献   

3.
目的:为提高β-葡萄糖苷酶的产量,用毕赤酵母取代理氏木霉用于生产,以弥补理氏木霉在大规模生产中的缺陷。方法:用套叠PCR法从理氏木霉基因组中扩增β-葡萄糖苷酶基因(bglⅠ)。用T4DNA连接酶和限制性DNA内酶将bglⅠ重组于P.pastoris表达载体pPIC9K的多克隆位点,获得含bglⅠ的重组表达载体pPIC9K-bglⅠ。通过电转法将其pPIC9K-bglⅠ载体转化于P.pastoris基因组,筛选高G418抗性以及高表达bglⅠ酶的重组子作为工程菌。结果:用BMGY-BMMY培养基体系,在摇瓶中发酵48 h,表达BglⅠ30 mg/L,在P.pastoris中表达的BglⅠ能水解对硝基苯-β-D-葡萄糖苷具有β-葡萄糖苷酶活性。其酶活力为56 U/L发酵液。结论:通过这种方法,可以成功地用毕赤酵母表达理氏木霉的β-葡萄糖苷酶基因。  相似文献   

4.
Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system.  相似文献   

5.
里氏木霉纤维二糖水解酶Ⅱ在毕赤酵母中的高效表达   总被引:16,自引:0,他引:16  
本工作采用巴氏毕赤酵母Pichiapastoris表达系统进行了里氏木霉Trichodermareesei纤维二糖水解酶Ⅱ(CellobiohydrolaseII)的表达。用RT-PCR的方法从经稻草粉诱导的里氏木霉培养物中分离出纤维二糖水解酶Ⅱ的基因,将其插入到巴氏毕赤酵母的表达载体pPICZαA中,并使之处于α-因子信号肽序列的下游,得到重组质粒pPICZαA-cbh2。通过电穿孔的方法用线性化的pPICZαA-cbh2转化巴氏毕赤酵母GS115菌株,经过大量筛选后得到可以高效表达纤维二糖水解酶的毕赤酵母菌株P.pastorisCBHⅡ1。在甲醇诱导的条件下培养P.pastorisCBHⅡ1,培养液中的CMC活性可达到3.82U/mL,SDS-PAGE分析结果表明纤维二糖水解酶在P.pastorisCBHⅡ1中的表达量远远高于里氏木霉。对表达产物进行了LC-MS分析,结果表明所表达的蛋白为里氏木霉的纤维二糖水解酶。  相似文献   

6.
Heterologous expression in Pichia pastoris has many of the advantages of eukaryotic expression, proper folding and disulfide bond formation, glycosylation, and secretion. Contrary to other eukaryotic systems, protein production from P.pastoris occurs in simple minimal defined media making this system attractive for production of labeled proteins for NMR analysis. P.pastoris is therefore the expression system of choice for NMR of proteins that cannot be refolded from inclusion bodies or that require post-translational modifications for proper folding or function. The yield of expressed proteins from P.pastoris depends critically on growth conditions, and attainment of high cell densities by fermentation has been shown to improve protein yields by 10–100-fold. Unfortunately, the cost of the isotopically enriched fermentation media components, particularly 15NH4OH, is prohibitively high. We report fermentation methods that allow for both 15N- labeling from (15NH4)2SO4 and 13C-labeling from 13C-glucose or 13C-glycerol of proteins produced in Pichia pastoris. Expression of an 83 amino acid fragment of thrombomodulin with two N-linked glycosylation sites shows that fermentation is more cost effective than shake flask growth for isotopic enrichment.  相似文献   

7.
To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae (α factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 °C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.  相似文献   

8.
Pichia pastoris was transformed with the Trichoderma reesei cbh1 gene, and the recombinant enzyme was purified and analyzed kinetically and by circular dichroism. The P. pastoris rCBH I was recognized by MoAb raised to T. reesei CBH I but was found in multiple molecular weight species on SDS-PAGE gels. Carbohydrate content determination and SDS-PAGE western analysis indicated that the recombinant protein was hyperglycosylated, although a species very similar in molecular weight to the T. reesei enzyme could be isolated chromatographically. The P. pastoris rCBH I also demonstrated activity toward soluble and insoluble substrates (i.e., pNPL and Sigmacell), although at a level significantly lower than the wild-type enzyme. More seriously, the yeast-expressed enzyme showed non-wild-type secondary structure by circular dichroism. We conclude that P. pastoris may not serve as an adequate host for the site-directed mutagenesis of T. reesei CBH I.  相似文献   

9.
Strains of the methylotrophic yeast Pichia pastoris auxotrophic for the aromatic amino acids (tyrosine, phenylalanine, and tryptophan) have been constructed by targeted gene disruption for protein labeling applications. Three strains, with defects in ARO1 (coding for a homolog of the arom pentafunctional enzyme), ARO7 (coding for chorismate mutase), and TYR1 (coding for prephenate dehydrogenase), have been engineered in a P. pastoris ura3Delta1 parent strain using standard methods. The nutritional requirements of these auxotrophic strains have been characterized and their utility as expression hosts for labeling recombinant proteins has been demonstrated. All three strains show a surprising sensitivity to rich culture medium and must be grown in supplemented minimal medium. The tyr1::URA3 strain in particular is strongly inhibited by tryptophan, and to a lesser extent by phenylalanine, leucine, and isoleucine. Highly efficient incorporation of exogenously supplied amino acids by these three auxotroph strains has been demonstrated using recombinant galactose oxidase. Stereochemically pure l-amino acids and racemic d,l-mixtures serve nearly equally well to support protein expression and labeling. These strains allow efficient labeling of aromatic amino acids in recombinant proteins, supporting NMR structural biology and a wide range of other biophysical studies.  相似文献   

10.
11.
The ste1 gene encoding a steryl esterase was isolated from the thermophilic fungus Melanocarpus albomyces. The gene has one intron, and it encodes a protein consisting of 576 amino acids. The deduced amino acid sequence of the steryl esterase was shown to be related to lipases and other esterases such as carboxylesterases. Formation of mature protein requires post-translational removal of a putative 18-amino-acid signal sequence and a 13-residue propeptide at the N-terminus. The intronless version of the Melanocarpus albomyces ste1 gene was expressed in Pichia pastoris under the inducible AOX1 promoter. The production level was low, and a large proportion of the total activity yield was found to be present intracellularly. However, the fact that steryl esterase activity was produced by P. pastoris cells carrying the expression cassette confirmed that the correct gene had been cloned. The ste1 gene was subsequently expressed in T. reesei under the inducible cbh1 promoter, and a clearly higher production level was obtained. About 60% of the total activity was bound to the fungal mycelium or to solid components of the culture medium, or existed as aggregates. Triton X-100 was successfully used to recover this activity. The heterologous production system in T. reesei provides a means of producing M. albomyces steryl esterase STE1 reliably in large scale for future studies.  相似文献   

12.
棉铃虫组织蛋白酶B酶原在毕赤酵母中的表达   总被引:1,自引:0,他引:1  
棉铃虫组织蛋白酶B( Helicoverpa armigera Cathepsin B ,HCB)属于半胱氨酸蛋白酶类,参与胚胎发育中卵黄蛋白水解供给胚胎发育的氨基酸。本研究将HCB基因克隆到pPIC9K载体并转化毕赤酵母KM71菌株,经甲醇诱导,HCB表达并分泌到培养上清中。表达产物经SDS-PAGE测定分子量为38 kD, 与HCB基因编码的蛋白质分子量一致。用HCB的特异性抗体检测表明重组表达产物为棉铃虫组织蛋白酶B,原位水解实验显示重组表达的蛋白酶具有蛋白水解活性,表明在毕赤酵母中表达了有活性的棉铃虫组织蛋白酶B, 可用于组织蛋白酶B酶原活化机理研究及开发新蛋白酶产品。  相似文献   

13.
The endoglucanase II of Trichoderma reesei is considered the most effective enzyme for biofinishing cotton fabrics and biostoning denim garments. However, the commercially available preparation of endoglucanase II is usually mixed with other cellulase components, especially endoglucanase I, resulting in hydrolysis and weight loss of garments during biofinishing and biostoning. We thus isolated the endoglucanase II gene from T. reesei to express this in Pichia pastoris, under the control of a methanol-inducible AOX1 promoter, to avoid the presence of other cellulase components. A highly expressible Mut(+) transformant was selected and its expression in BMMH medium was found most suitable for the production of large amounts of the recombinant protein. Recombinant endoglucanase II was purified to electrophoretic homogeneity, and functionally characterized by activity staining. The specific activity of recombinant endoglucanase II was found to be 220.57 EU/mg of protein. Purified recombinant endoglucanase II was estimated to have a molecular mass of 52.8 kDa. The increase in molecular mass was likely due to hyperglycosylation. Hyperglycosylation of recombinant endoglucanase II secreted by P. pastoris did not change the temperature or pH optima as compared to the native protein, but did result in increased thermostability. Kinetic analysis showed that recombinant endoglucanase was most active against amorphous cellulose, such as carboxymethyl cellulose, for which it also had a high affinity.  相似文献   

14.
To improve the expression level of recombinant Drosophila melanogaster AChE (R-DmAChE) in Pichia pastoris, the cDNA of DmAChE was first optimized and synthesized based on the preferred codon usage of P. pastoris. The synthesized AChE cDNA without glycosylphosphatidylinositol (GPI) signal peptide sequence was then ligated to the P. pastoris expression vector, generating the plasmid pPIC9K/DmAChE. The linearized plasmid was homologously integrated into the genome of P. pastoris GS115 via electrotransformation. Finally seven transformants with high expression level of R-DmAChE activity were obtained. The highest production of R-DmAChE in shake-flask culture after 5-day induction by methanol was 718.50units/mL, which was about three times higher than our previous expression level of native DmAChE gene in P. pastoris. Thus, these new strains with the ability to secret R-DmAChE in the medium could be used for production of R-DmAChE to decrease the cost of the enzyme expense for rapid detection of organophosphate and carbamate insecticide residues.  相似文献   

15.
The synthesis of melanin intermediates through tyrosinase (TYR) involves the production of cytotoxic free radicals. By using recombinant adenoviruses that express TYR, tyrosinase-related protein 1 (TYRP1) or DOPAchrome tautomerase (DCT), we analyzed the biological function of these proteins with regard to melanin production and the growth of melanocytes, fibroblasts, melanoma cells and nonmelanoma cancer cells. High-level expression of TYR produced newly synthesized melanin and induced cell death in all of these cells. However, when TYRP1 or DCT was coexpressed with TYR in melanocytes and melanoma cells, TYR-mediated cell death was clearly decreased. This decrease was not observed in nonmelanocytic cells. Western blot analysis and measurement of enzyme activity revealed that the expression of TYRP1 or DCT had little effect on the amount or activity of cointroduced TYR in either the melanocytic or nonmelanocytic cells. In cells expressing both TYR and TYRP1 or TYR and DCT, the total amount of melanin and/or eumelanin increased substantially more than that in cells expressing TYR alone. On the other hand, the level of pheomelanin was similar in these three cell types. These findings suggest that TYRP1 and DCT play an important role in suppressing TYR-mediated cytotoxicity in melanocytic cells without decreasing TYR expression and/or activity. These biological activities of TYRP1 and DCT may work through the interaction with TYR in melanosomal compartment.  相似文献   

16.

Background

Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.

Methodology/Principal Findings

The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.

Conclusions/Significance

The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.  相似文献   

17.
Chen CY  Cheng CH  Chen YC  Lee JC  Chou SH  Huang W  Chuang WJ 《Proteins》2006,62(1):279-287
We report the culture conditions for successful amino-acid-type selective (AATS) isotope labeling of protein expressed in Pichia pastoris (P. pastoris). Rhodostomin (Rho), a six disulfide-bonded protein expressed in P. pastoris with the correct fold, was used to optimize the culture conditions. The concentrations of [alpha-15N] selective amino acid, nonlabeled amino acids, and ammonium chloride, as well as induction time, were optimized to avoid scrambling and to increase the incorporation rate and protein yield. The optimized protocol was successfully applied to produce AATS isotope-labeled Rho. The labeling of [alpha-15N]Cys has a 50% incorporation rate, and all 12 cysteine resonances were observed in HSQC spectrum. The labeling of [alpha-15N]Leu, -Lys, and -Met amino acids has an incorporation rate greater than 65%, and the expected number of resonances in the HSQC spectra were observed. In contrast, the labeling of [alpha-15N]Asp and -Gly amino acids has a low incorporation rate and the scrambling problem. In addition, the culture condition was successfully applied to label dendroaspin (Den), a four disulfide-bonded protein expressed in P. pastoris. Therefore, the described condition should be generally applicable to other proteins produced in the P. pastoris expression system. This is the first report to present a protocol for AATS isotope labeling of protein expressed in P. pastoris for NMR study.  相似文献   

18.
19.
20.
Tyrosinase is the major enzyme responsible for the formation of melanin pigment and is found throughout the animal kingdom. In humans, the tyrosinase gene (TYR) maps to the long arm of chromosome 11 at band q14→q21, while a tyrosinase related gene (TYRL) maps to the short arm of chromosome 11 at pll.2°Cen. We and others have found that the TYRL locus contains sequences that are similar to exons IV and V of the authentic tyrosinase gene but lacks sequences of exons I, II, and III. In an attempt to understand the evolution of the human tyrosinase gene, we have analyzed TYR and TYRL in primates and have found that exons IV and V of the chimpanzee and gorilla TYR are very similar to the human, with the gorilla sequence being more similar than the chimpanzee. We have also found that the gorilla but not the chimpanzee contains a TYRL locus similar to the human TYRL locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号