首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand (alpha/beta-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.  相似文献   

2.
We have solved the NMR structure of the 31-nucleotide (nt) apoB mRNA stem-loop, a substrate of the cytidine deaminase APOBEC1. We found that the edited base located at the 5' end of the octa-loop is stacked between two adenosines in both the unedited (cytidine 6666) and the edited (uridine 6666) forms and that the rest of the loop is unstructured. The 11-nt "mooring" sequence essential for editing is partially flexible although it is mostly in the stem of the RNA. The octa-loop and the internal loop in the middle of the stem confer this flexibility. These findings shed light on why APOBEC1 alone cannot edit efficiently the cytidine 6666 under physiological conditions, the editing base being buried in the loop and not directly accessible. We also show that APOBEC1 does not specifically bind apoB mRNA and requires the auxiliary factor, APOBEC1 complementary factor (ACF), to edit specifically cytidine 6666. The binding of ACF to both the mooring sequence and APOBEC1 explains the specificity of the reaction. Our NMR study lead us to propose a mechanism in which ACF recognizes first the flexible nucleotides of the mooring sequence (the internal loop and the 3' end octa-loop) and subsequently melts the stem-loop, exposing the amino group of the cytidine 6666 to APOBEC1. Thus, the flexibility of the mooring sequence plays a central role in the RNA recognition by ACF.  相似文献   

3.
We studied the synergistic enhancement effects of two chemicals which are different in their mechanism of action on DNA in cells. The test chemicals used were ethyl methanesulfonate (EMS) as an alkylating agent and cytosine arabinoside (Ara-C) as an analogue of cytidine. For determination of mutagenesis we measured the induction of resistance to 6-thioguanine (6-TG) in Chinese hamster V79 cells. EMS had a strong mutagenic effect on V79 cells, but for Ara-C the results were less clear. In this study, Ara-C had no detectable effect in inducing mutation up to a concentration of 5 X 10(-4) M. The mutation frequency of combined treatment with EMS and Ara-C was significantly higher than that obtained with EMS alone. These results indicate that Ara-C had an enhancing effect on mutations induced by EMS.  相似文献   

4.
The bis(S-pivaloyl-2-thioethyl) phosphotriesters of Ara-C and Ara-A were synthesized as potential bioreversible mononucleotide prodrugs. Some N- and O-acylated derivatives were also prepared with the aim to modify the lipophilicity of the title pronucleotides. Compounds were tested for their antitumor/antiviral activity against a variety of tumor cells and viruses.  相似文献   

5.
The mRNA nuclear export function of Tap/NXF1 requires interactions with nuclear pore proteins (nucleoporins) that contain characteristic Phe-Gly repeats based on FG, GLFG or FxFG cores separated by hydrophilic linkers. FG-nucleoporins bind the two most C-terminal domains of Tap, which have NTF2 and UBA folds, respectively. We used a combination of NMR and X-ray crystallography to define the interaction interface between Tap UBA and FxFG nucleoporins and show that it involves primarily the two aromatic rings of the FxFG core that bind in a hydrophobic surface depression centred on Tap Cys588. NMR evidence indicates that the same depression mediates the binding of GLFG nucleoporins, which we confirmed by demonstrating competition between the two classes of repeat for binding to Tap UBA. Moreover, modification of Cys588 reduced the binding of Tap UBA to both GLFG and FxFG nucleoporins as well as to nuclear envelopes. These data underscore the central role of the conserved FG-nucleoporin repeat cores in binding to Tap UBA and indicate that functional differences between different classes of nucleoporins depend more on their spatial distribution in nuclear pores than on their binding to different sites on Tap UBA.  相似文献   

6.
The interaction of naphthothiophene, phenanthrene and anthracene ring systems, which have amide and ester side chains with cationic groups (synthesized from the aromatic acid chlorides and appropriate amines and alcohols), with calf thymus DNA has been investigated by using viscometric titrations, spectrophotometric binding experiments and 1H-, 31P- and 17O-NMR methods. The viscosity and NMR experiments suggest that all of these compounds bind to DNA by intercalation. These experiments and spectrophotometric binding studies, however, indicate that there is considerable variation in the interaction of these compounds with DNA. These variations can all be explained by the geometry of the ring systems, the position of protons adjacent to the side chains, and the relative sizes of the amide and ester side chains. With the naphthothiophene ester and amide, for example, the planar amide cannot rotate into the plane of the naphthothiophene ring whereas the smaller planar ester can. With this ring system the ester has a significantly higher binding constant than the amide derivative. Additional binding studies with poly[d(A-T)2] and poly[d(G-C)2] have shown that all of these compounds bind more strongly to the A-T- than the G-C-containing polymer. Since the ester compounds do not have hydrogen bond donating groups proximate to the aromatic ring, these results suggest a model for the A-T specificity of these compounds that involves a solvent-mediated hydrogen bond between the C-2 carbonyl of thymine and the carbonyl group of the intercalators.  相似文献   

7.
Abstract

The bis(S-pivaloyl-2-thioethyl) phosphotriesters of Ara-C and Ara-A were synthesized as potential bioreversible mononucleotide prodrugs. Some N- and O-acylated derivatives were also prepared with the aim to modify the lipophilicity of the title pronucleotides. Compounds were tested for their antitumor/antiviral activity against a variety of tumor cells and viruses.  相似文献   

8.
Studies of the interaction specificities of L-lysyl-L-phenylalaninamide (1) and the diastereomeric dipeptide amide, L-lysyl-D-phenylalaninamide (2), with salmon sperm DNA reveal distinct differences in the binding site of the aromatic ring of the phenylalanine residue. The results of 1H nuclear magnetic resonance (NMR), spin-lattice relaxation rates, viscometric, and flow dichroism studies indicate the aromatic ring of 1 is "partially" inserted between base pairs of DNA whereas the aromatic ring of 2 points outward toward the solution. The terminal L-lysyl residue presumably interacts stereospecifically with DNA helix thus dictating the positioning of the aromatic ring of the C-terminal phenylalanine residue. In the accompanying paper (E. J. Gabbay et al. (1976), Biochemistry, following paper in this issue), the interaction of several oligopeptide amides (containing the N-terminal L-Lys-L-Phe residue) with DNA is examined. The results are found to be consistent with stereospecific binding of the terminal L-lysyl residue, and in addition, the evidence suggests that oligopeptides may bind to DNA via a modified single-stranded beta-sheet structure which is wrapped around the nucleic acid helix in a manner similar to that described by M. H. F. Wilkins (1956), Cold Spring Harbor Symp. Quant. Biol. 21, 75).  相似文献   

9.
10.
Borna disease virus (BDV) is a nonsegmented, negative-stranded RNA virus that causes neurological diseases in a variety of warm-blooded animal species. Recently, we showed that the nucleoside analog 1-beta-D-arabinofuranosylcytosine (Ara-C) was a potent inhibitor of BDV. This finding was surprising for an RNA virus, since Ara-C is a DNA polymerase inhibitor. Thus, we sought to better define the mechanism of action of Ara-C on BDV. Here, we show that (i) this effect is specific for an arabinoside ring carrying a cytosine base, (ii) it requires phosphorylation of the nucleotide, and (iii) it can be reversed by an excess of cytidine. Using the recently described minigenome assay for BDV, we provide evidence suggesting that Ara-C may act as a competitive inhibitor of the BDV replication complex.  相似文献   

11.
Natural abundance, proton-decoupled 13C magnetic resonance spectroscopy is shown to be a useful technique for identifying the mercury (II) binding sites on nucleosides and especially thiolated nucleosides. Measurements made on dimethyl sulfoxide-d6 solutions, 0.5 M in nucleoside and 0.15 M in mercury, reveal that both CH3 HgCl and HgCl2 bind principally to the sulfur atoms of s6 Guo and s8 Guo. The 13C NMR spectra of the unthiolated nucleosides in the presence of excess (4:1) mercury reveal that HgCl2 binds to N-3 of cytidine, to more than one site on adenosine and guanosine, but not strongly to uridine. Excess HgCl2 shifts the thiocarbonyl carbon atoms in s6 Guo and s8 Guo approx. 16 ppm upfield compared to the free nucleosides, and there is evidence for additional coordination to N-7 of s6 Guo. Binding to the ribose hydroxyl groups is clearly ruled out. At least in these instances, 13C NMR proves to be useful for assigning the mercury (II) binding sites, complementing the results of proton magnetic resonance studies. Proton NMR data for the binding of CH3 HgCl and HgCl2 to s6 Guo and s8 Guo are also presented.  相似文献   

12.
13.
14.
A heterocyclic inhibitor of the REV-RRE complex binds to RRE as a dimer   总被引:3,自引:0,他引:3  
Li K  Davis TM  Bailly C  Kumar A  Boykin DW  Wilson WD 《Biochemistry》2001,40(5):1150-1158
  相似文献   

15.
16.
The binding of acetazolamide, p-fluorobenzensulfonamide, p-toluenesulfonamide, and sulfanilamide to nickel(II)-substituted carbonic anhydrase II has been studied by 1H NMR and electronic absorption spectroscopies. These inhibitors bind to the metal ion forming 1:1 complexes and their affinity constants were determined. The 1H NMR spectra of the formed complexes show a number of isotropically shifted signals corresponding to the histidine ligands. The complexes with benzene-sulfonamides gave rise to very similar 1H NMR spectra. The NMR data suggest that these aromatic sulfonamides bind to the metal ion altering its coordination sphere. In addition, from the temperature dependence of 1H NMR spectra of the p-fluorobenzenesulfonamide adduct, a conformational change is suggested. The T1 values of the meta-like protons of the coordinated histidines have been measured and resonance assignments based on NOE experiments were performed.  相似文献   

17.
The weak binding of lanthanides to the five carboxyl groups of the basic pancreatic trypsin inhibitor (hereafter termed "the inhibitor"), has been investigated in detail using high resolution 1H NMR at 360 MHz. Lanthanides bind to the C-terminus with an apparent binding constant of 30 M-1, and thus competitively inhibit the formation of a salt-bridge between the C-terminus and the N-terminus, Lanthanides bind also to the side chain carboxyl groups of Asp 3, Glu 7, Glu 49 and Asp 50, with binding constants of 10--30 M-1. With the use of lanthanides individual resonance assignments for Phe 4 and Phe 45 were obtained in the 1H NMR spectrum of the inhibitor, and for several spin systems previous identifications were independently confirmed. The present experiments also provide a nice illustration for the use of shift reagents to improve the resolution in 1H NMR spectra of proteins. The exchange broadening for Tyr 35 and Phe 45 over the temperature range 4--72 degrees C could thus be observed for almost all the components of these aromatic spin systems and new details on the dynamic properties were obtained also for other aromatic residues.  相似文献   

18.
19.
The nucleotide binding ability of the novel anthracycline drug, 3-fluoro-4-demethoxydaunomycin, has been studied by two dimensional 1H NMR correlated spectroscopy (COSY). In the COSY spectrum of the nucleotide mini-helix d(CTGCAG)2 cross-peaks are observed from the spin-coupled H6 and H5 protons of the cytidine bases. Additional cytidine H6/H5 cross-peaks are observed in the COSY spectrum of the anthracycline-d(CTGCAG)2 complex. These additional cytidine cross-peaks enable the identification of the anthracycline binding sites and the determination of the relative kinetic stability of the bound drug at each binding site.  相似文献   

20.
Carnosine, anserine and copper(II) ion all bind to specific sites on bovine serum albumin, and, in addition, both dipeptides chelate copper(II) ion in the absence of serum albumin. Thus a solution of dipeptide, copper(II) ion and serum albumin exhibits several complexes that arise from the competing binding reactions. Since a change in this complex equilibrium might occur in Wilson's disease, we have investigated the reactions between the various complexes with NMR and ESR spectroscopy. Serum albumin simultaneously binds the copper(II) ion and carnosine to separate sites rather than forming a mixed chelate, but carnosine still is capable of competing with serum albumin for subsaturating amounts of copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号