首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A comparative analysis of two models of nociceptive and neuropathic pain in rodents, carrageenan peripheral inflammation of soft tissues and streptozotocin-induced diabetic neuropathy, is presented in the review. Modern concepts on the pathways of transmission of pain information are analyzed. A few aspects of possible involvement at calcium signalling in neurons in the development of pain syndromes are discussed. Neirofiziologiya/Neurophysiology, Vol. 37, No. 2, pp. 184–190, March–April, 2005.  相似文献   

2.
Summary 1. The pathogenesis of diabetic neuropathy is a complex phenomenon, the mechanisms of which are not fully understood. Our previous studies have shown that the intracellular calcium signaling is impaired in primary and secondary nociceptive neurons in rats with streptozotocin (STZ)-induced diabetes. Here, we investigated the effect of prolonged treatment with the L-type calcium channel blocker nimodipine on diabetes-induced changes in neuronal calcium signaling and pain sensitivity.2. Diabetes was induced in young rats (21 p.d.) by a streptozotocin injection. After 3 weeks of diabetes development, the rats were treated with nimodipine for another 3 weeks. The effect of nimodipine treatment on calcium homeostasis in nociceptive dorsal root ganglion neurons (DRG) and substantia gelatinosa (SG) neurons of the spinal cord slices was examined with fluorescent imaging technique.3. Nimodipine treatment was not able to normalize elevated resting intracellular calcium ([Ca2+] i ) levels in small DRG neurons. However, it was able to restore impaired Ca2+ release from the ER, induced by either activation of ryanodine receptors or by receptor-independent mechanism in both DRG and SG neurons.4. The beneficiary effects of nimodipine treatment on [Ca2+] i signaling were paralleled with the reversal of diabetes-induced thermal hypoalgesia and normalization of the acute phase of the response to formalin injection. Nimodipine treatment was also able to shorten the duration of the tonic phase of formalin response to the control values.5. To separate vasodilating effect of nimodipine Biessels et al., (Brain Res. 1035:86–93) from its effect on neuronal Ca2+ channels, a group of STZ-diabetic rats was treated with vasodilator – enalapril. Enalapril treatment also have some beneficial effect on normalizing Ca2+ release from the ER, however, it was far less explicit than the normalizing effect of nimodipine. Effect of enalapril treatment on nociceptive behavioral responses was also much less pronounced. It partially reversed diabetes-induced thermal hypoalgesia, but did not change the characteristics of the response to formalin injection.6. The results of this study suggest that chronic nimodipine treatment may be effective in restoring diabetes-impaired neuronal calcium homeostasis as well as reduction of diabetes-induced thermal hypoalgesia and noxious stimuli responses. The nimodipine effect is mediated through a direct neuronal action combined with some vascular mechanism.  相似文献   

3.
Diabetic peripheral neuropathy (DPN) is considered to be the most frequent neuropathic complication of diabetes, and severely affects the quality of life of patients. Long noncoding RNAs (lncRNAs) participate in various pathophysiological processes and associate with many diseases. However, the exact impact of lncRNAs on DPN remains obscure. To discover a potential connection, a microarray study was conducted to analyze the expression profiling of lncRNAs and messenger RNAs (mRNAs) in dorsal root ganglia (DRG) from streptozotocin-induced diabetic rats with DPN. As a result, 983 lncRNAs and 1357 mRNAs were aberrantly expressed compared with control samples. Using bioinformatics analyses, we identified 558 Gene Ontology terms and 94 Kyoto Encyclopedia of Genes and Genomes pathways to be significantly enriched. Additionally, the signal-net analysis indicated that integrin receptors, including Itgb3, Itgb1, Itgb8, and Itga6, might be important players in network regulation. Furthermore, the lncRNA-mRNA network analysis showed dynamic interactions between the dysregulated lncRNAs and mRNAs. This is the first study to present an overview of lncRNA and mRNA expressions in DRG tissues from DPN rats. Our results indicate that these differentially expressed lncRNAs may have crucial roles in pathological processes of DPN by regulating their coexpressed mRNAs. The data may provide novel targets for future studies, which should focus on validating their roles in the progression of DPN.  相似文献   

4.
5.
Herein, we report the first study on the mass distribution and molecular species composition of abundant triacylglycerols (TAG) in ganglia. This study demonstrates five novel findings. First, unanticipated high levels of TAG were present in all examined ganglia from multiple species (e.g. mouse, rat and rabbit). Second, ganglial TAG mass content is location-dependent. Third, the TAG mass levels in ganglia are species-specific. Fourth, dorsal root ganglial TAG mass levels in streptozotocin-induced diabetic mice are dramatically depleted relative to those found in untreated control mice. Fifth, mouse ganglial TAG mass levels decrease with age although molecular species composition is not changed. Collectively, these results indicate that TAG is an important component of ganglia and may potentially contribute to pathological alterations in peripheral neuronal function in diabetic neuropathy.  相似文献   

6.
Increasing the expression of Hsp70 (heat-shock protein 70) can inhibit sensory neuron degeneration after axotomy. Since the onset of DPN (diabetic peripheral neuropathy) is associated with the gradual decline of sensory neuron function, we evaluated whether increasing Hsp70 was sufficient to improve several indices of neuronal function. Hsp90 is the master regulator of the heat-shock response and its inhibition can up-regulate Hsp70. KU-32 (N-{7-[(2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-6,6-dimethyl-tetrahydro-2H-pyran-2-yloxy]-8-methyl-2-oxo-2H-chromen-3-yl}acetamide) was developed as a novel, novobiocin-based, C-terminal inhibitor of Hsp90 whose ability to increase Hsp70 expression is linked to the presence of an acetamide substitution of the prenylated benzamide moiety of novobiocin. KU-32 protected against glucose-induced death of embryonic DRG (dorsal root ganglia) neurons cultured for 3 days in vitro. Similarly, KU-32 significantly decreased neuregulin 1-induced degeneration of myelinated Schwann cell DRG neuron co-cultures prepared from WT (wild-type) mice. This protection was lost if the co-cultures were prepared from Hsp70.1 and Hsp70.3 KO (knockout) mice. KU-32 is readily bioavailable and was administered once a week for 6 weeks at a dose of 20 mg/kg to WT and Hsp70 KO mice that had been rendered diabetic with streptozotocin for 12 weeks. After 12 weeks of diabetes, both WT and Hsp70 KO mice developed deficits in NCV (nerve conduction velocity) and a sensory hypoalgesia. Although KU-32 did not improve glucose levels, HbA1c (glycated haemoglobin) or insulin levels, it reversed the NCV and sensory deficits in WT but not Hsp70 KO mice. These studies provide the first evidence that targeting molecular chaperones reverses the sensory hypoalgesia associated with DPN.  相似文献   

7.
In this study, we used Raman spectroscopy as a new tool to investigate pathological conditions at the level of chemical bond alterations in biological tissues. Currently, there have been no reports on the spectroscopic alterations caused by diabetic neuropathy in the dorsal root ganglia (DRG). DRG are a target for the treatment of neuropathic pain, and the need for more effective therapies is increasing. Photobiomodulation therapy (PBMT) through infrared low‐level laser irradiation (904 nm) has shown analgesic effects on the treatment of neuropathy. Thus, the aim of this study was to use Raman spectroscopy to characterize the spectral DRG identities of streptozotocin (STZ)‐induced diabetic neuropathic (hyperalgesic) rats and to study the influence of PBMT over such spectra. Characteristic DRG peaks were identified at 2704, 2850, 2885, 2940, 3061 and 3160 cm?1, whose assignments are CH2/CH3 symmetric/asymmetric stretches, and C─H vibrations of lipids and proteins. DRG from hyperalgesic rats showed an increased normalized intensity of 2704, 2850, 2885 and 3160 cm?1. These same peaks had their normalized intensity reduced after PBMT treatment, accompanied by an anti‐hyperalgesic effect. Raman spectroscopy was able to diagnose spectral alterations in DRG of hyperalgesic rats and the PBMT reduced the intensity of hyperalgesia and the altered Raman spectra.  相似文献   

8.
Distal symmetrical sensory neuropathy in diabetes involves the dying back of axons, and the pathology equates with axonal dystrophy generated under conditions of aberrant Ca2+ signalling. Previous work has described abnormalities in Ca2+ homoeostasis in sensory and dorsal horn neurons acutely isolated from diabetic rodents. We extended this work by testing the hypothesis that sensory neurons exposed to long-term Type 1 diabetes in vivo would exhibit abnormal axonal Ca2+ homoeostasis and focused on the role of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). DRG (dorsal root ganglia) sensory neurons from age-matched normal and 3–5-month-old STZ (streptozotocin)-diabetic rats (an experimental model of Type 1 diabetes) were cultured. At 1–2 days in vitro an array of parameters were measured to investigate Ca2+ homoeostasis including (i) axonal levels of intracellular Ca2+, (ii) Ca2+ uptake by the ER (endoplasmic reticulum), (iii) assessment of Ca2+ signalling following a long-term thapsigargin-induced blockade of SERCA and (iv) determination of expression of ER mass and stress markers using immunocytochemistry and Western blotting. KCl- and caffeine-induced Ca2+ transients in axons were 2-fold lower in cultures of diabetic neurons compared with normal neurons indicative of reduced ER calcium loading. The rate of uptake of Ca2+ into the ER was reduced by 2-fold (P<0.05) in diabetic neurons, while markers for ER mass and ER stress were unchanged. Abnormalities in Ca2+ homoeostasis in diabetic neurons could be mimicked via long-term inhibition of SERCA in normal neurons. In summary, axons of neurons from diabetic rats exhibited aberrant Ca2+ homoeo<1?show=[fo]?>stasis possibly triggered by sub-optimal SERCA activity that could contribute to the distal axonopathy observed in diabetes.  相似文献   

9.
This study aimed to investigate the functions of miR-214-3p in diabetic neuropathic rodents. The diabetic neuropathy was induced by intraperitoneal injection of streptozotocin (STZ) in rats, and miR-214-3p was delivered via tail vein injection of lentivirus. Hot or cold stimulus tests demonstrated that STZ induced thermal hyperalgesia. Neurophysiological measurements revealed that motor and sensory nerve conduction velocity and nerve blood flow were decreased in diabetic neuropathic rats. However, the STZ-induced hyperalgesia, and reduced nerve conduction velocity and nerve blood flow were all significantly reversed by miR-214-3p administration. HE staining, TUNEL, ELISA, and immunoblotting demonstrated that STZ led to obvious pathological lesion, cell apoptosis, and inflammation in dorsal root ganglion (DRG), evidenced by altered levels of apoptosis-related protein molecules and inflammatory factors, and activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88/nuclear factor kappa B signaling. The pathological alterations in diabetic neuropathic rats in DRG were significantly ameliorated by miR-214-3p application. In addition, sodium channel protein type 3 subunit alpha isoform 1 (Nav1.3) and TLR4 were identified as targets of miR-214-3p via dual-luciferase reporter assay. MiR-214-3p may play its roles by downregulating Nav1.3 and TLR4. In summary, miR-214-3p alleviated diabetes-induced nerve injury, and pathological lesion, cell apoptosis, and inflammation in DRG by regulating Nav1.3 and TLR4 in STZ-induced rats. These findings may provide novel therapeutic targets for clinical treatment of diabetic neuropathy.  相似文献   

10.
Fedirko  N.  Vats  Yu.  Kruglikov  I.  Voitenko  N. 《Neurophysiology》2004,36(3):169-173
In a rat model of streptozotocin (STZ)-induced diabetes, we earlier showed that under these conditions the concentration of free cytosolic Ca2+ in input neurons of the nociceptive system increases, Ca2+ signals are prolonged, while Ca2+ release from intracellular calcium stores decreases. The aim of our study was to test the hypothesis that changes in the activities of Ca2+,Mg2+-ATPases of the endoplasmic reticulum (SERCA) and plasmalemma (PMCA) could be responsible for diabetes-induced disorders of calcium homeostasis in nociceptive neurons. We measured the Ca2+,Mg2+-ATPase activities in microsomal fractions obtained from tissues of the dorsal root ganglia (DRG) and spinal dorsal horn (DH) of control rats and rats with experimentally induced diabetes. The integral specific Ca2+,Mg2+-ATPase activity in microsomes from diabetic rats was lower than that in the control group. The activity of SERCA in samples of DRG and DH of diabetic rats was reduced by 50 ± 8 and 48 ± 12%, respectively, as compared with the control (P < 0.01). At the same time, the activity of PMCA decreased by 63 ± 6% in DRG and by 60 ± 9% in DH samples (P < 0.01). We conclude that diabetic polyneuropathy is associated with the reduction of the rate of recovery of the Ca2+ level in the cytosol of DRG and DH neurons due to down-regulation of the SERCA and PMCA activities.  相似文献   

11.
Chronic diabetic neuropathy is associated with peripheral demyelination and degeneration of nerve fibers. The mechanism(s) underlying neuronal injury in diabetic sensory neuropathy remain poorly understood. Recently, we reported increased expression and function of transient receptor potential vanilloid 1 (TRPV1) in large dorsal root ganglion (DRG) neurons in diabetic sensory neuropathy. In this study, we examined the effects of TRPV1 activation on cell injury pathways in this subpopulation of neurons in the streptozotocin-induced diabetic rat model. Large DRG neurons from diabetic (6–8 weeks) rats displayed increased oxidative stress and activation of cell injury markers compared with healthy controls. Capsaicin (CAP) treatment induced decreased labeling of MitoTracker Red and increased cytosolic cytochrome c and activation of caspase 3 in large neurons isolated from diabetic rats. CAP treatment also induced oxidative stress in large diabetic DRG neurons, which was blocked by pre-treatment with caspase or calpain inhibitor. In addition, both μ-calpain expression and calpain activity were significantly increased in DRG neurons from diabetic rats after CAP treatment. Treatment with capsazepine, a competitive TRPV1 antagonist, markedly reduced these abnormalities in vitro and prevented activation of cell injury in large DRG neurons in diabetic rats in vivo . These results suggest that activation of the TRPV1 receptor activates pathways associated with caspase-dependent and calpain-dependent stress in large DRG neurons in STZ-diabetic rats. Activation of the TRPV1 receptor may contribute to preferential neuronal stress in large DRG neurons relatively early in diabetic sensory neuropathy.  相似文献   

12.
动脉粥样硬化是糖尿病常见的并发症,80%的糖尿病患者死于动脉粥样硬化。近年来内质网应激在糖尿病动脉粥样硬化发生、发展过程中的作用受到了广泛关注。本文就内质网应激及其在糖尿病促发动脉粥样硬化中的作用机制作一概述。  相似文献   

13.
鸡胚脊髓背角中神经营养活性物质的初步分离和检测   总被引:2,自引:0,他引:2  
Liu YB  Xue QS  Xiao YP  Wang XR 《生理学报》2001,53(4):321-324
从9d龄鸡胚脊髓背、腹角组织提取液中,用SephadexC-75凝胶层析法分离出DⅠ和DⅡ,VⅠ和VⅡ各组蛋白质组分,体外培养检测各组分对鸡胚背根节的神经营养活性,结果表明,DⅡ组分具有明显的促背根节神经突起生长的作用,而DⅠ组分无此作用;经SDS-PAGE电泳检测,DⅡ组分中蛋白质的分子量范围是61-15kD。而腹角的分离组分VⅠ和VⅡ对背根神经节神经突起的生长并无明显作用。  相似文献   

14.
Pathogenesis and treatment for diabetic neuropathy are still complex. A deficit of neurotrophic factors affecting Schwann cells is a very important cause of diabetic neuropathy. Neuritin is a newly discovered potential neurotrophic factor. In this study, we explored the effect of exogenous neuritin on survivability and functions of diabetic Schwann cells of rats with experimental diabetic neuropathy. Diabetic neuropathy was induced in rats. 12‐week diabetic rats contrasted with non‐diabetic normal rats had decreased levels of serum neuritin and slowed nerve conduction velocities (NCVs). Schwann cells isolated from these diabetic rats and cultured in high glucose showed reduced cell neuritin mRNA and protein and supernatant neuritin protein, increased apoptosis rates, increased caspase‐3 activities and progressively reduced viability. In contrast, exogenous neuritin treatment reduced apoptosis and improved viability, with elevated Bcl‐2 levels (not Bax) and decreased caspase‐3 activities. Co‐cultured with diabetic Schwann cells pre‐treated with exogenous neuritin in high glucose media, and diabetic DRG neurons showed lessened decreased neurite outgrowth and supernatant NGF concentration occurring in co‐culture of diabetic cells. Exogenous neuritin treatment ameliorated survivability and functions of diabetic Schwann cells of rats with diabetic neuropathy. Our study may provide a new mechanism and potential treatment for diabetic neuropathy.  相似文献   

15.
16.
17.
In co-culture of spinal cord and dorsal root ganglion (DRG) neurons, we studied at different terms of culturing postsynaptic currents in DRG neurons evoked by direct electrical stimulation of single spinal neurons using a voltage-clamp technique in the whole-cell configuration. According to the reversal potential and sensitivity to bicuculline, these currents were classified as inhibitory postsynaptic currents (IPSC) carried by Cl- ions through GABAA receptors. During neuronal development in dissociated co-culture, the amplitude of evoked IPSC and their time to peak significantly increased. The time to peak of spontaneous IPSC (sIPSC) in DRG neurons remained unchanged, while the frequency of these currents increased with increasing culturing time. It is concluded that under culturing conditions spinal neurons establish inhibitory synaptic contacts with the somata of DRG neurons, and the number of such functional contacts increases in the course of culturing. Our findings show that in dissociated co-culture the process of formation of inhibitory synapses on the axon terminals of primary afferent neurons is akin to that realized in vivo, but with dissimilar topography of distribution of such synapses.  相似文献   

18.
半胱胺对猫脊髓背角神经元伤害性热反应的抑制   总被引:1,自引:0,他引:1  
在戊巴比妥钠麻醉和脊髓腰-1段全横切的16只猫上,观察生长抑素(somatostatin,SOM)的耗竭剂半胱胺对伤害性热刺激脚跖皮肤和电刺激胫后神经所引起的脊髓背角Ⅳ-Ⅵ层神经元单位反应的影响。静脉注射半胱胺50mg/kg对电刺激神经引起的伤害性反应无影响,100mg/kg可使被测试的13个神经元单位中的8个单位反应明显抑制。而静脉注射半胱胺50mg/kg可明显抑制伤害性热刺激所引起的脊髓背角神经元单位反应。用微电极将半胱胺微压注入背角胶质层也使背角神经元的伤害性热反应明显抑制,但只使13个单位中的7个单位对电刺激神经引起的伤害性反应轻度抑制。半胱胺对背角神经元伤害性反应的抑制可能由于耗竭了背角中的生长抑素。本文讨论了半胱胺对背角神经元伤害性热反应的抑制明显强于电刺激神经所诱发的伤害性反应的抑制的可能机制。  相似文献   

19.
目的:研究糖尿病人植物神经病变与心率变异的关系。对象:正常对照组和根据临床有无糖尿病神经病变(DAN)分组的糖尿病病人,方法:应用24小时动态心电图对正常和糖尿病人进行心率变异的线性,非线性散点图和非线性定量参数分析,结果:单纯糖尿病组SDNN,SDANN和PNN50低于正常组(P〈0.05);糖尿病+DAN组各项线性时域分析指标均低于正常和单纯糖尿病组(P〈0.01-0.001),散点图分析结果  相似文献   

20.
TachykininfamilyisagroupofneuropeptideswithsimilarCterminalsequencesandrelatedbioactivities.ThemajortachykininsinmammalianaresubstanceP(SP),neurokininA(NKA)andneurokininB(NKB).Correspondingtothesepeptides,threedistincttachykininreceptorswerediscoveredandn…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号