首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Small presynaptic conditioning hyperpolarizing pulses reduce transmitter release to a depolarizing stimulus by a substantial amount, with little effect on release by a subsequent depolarization. This result, obtained at neuromuscular junctions and the squid giant synapse, has been offered as a disproof of the calcium hypothesis of transmitter release or the residual calcium hypothesis of synaptic facilitation. However, calculations based on several formulations of these hypotheses are shown to be consistent with the experimental results, and no fundamental modification of the hypotheses is necessary.  相似文献   

2.
The resting electrical properties of the presynaptic terminal of the squid giant synapse have been determined by using constant current pulses. After short periods of repetitive stimulation, the terminal resistance, time constant and capacitance are found to be increased. These changes are absent in terminals bathed in artificial sea water containing no calcium, and sea water containing 5 mM cobalt. It seems likely that these changes are associated with transmitter release.  相似文献   

3.
1. An enzyme similar to mammalian acetylcholinesterase is found in high activity in the nervous tissue of Palaemonetes varians, i.e. eyes plus stalks, brain, suboesophageal ganglion and ventral cord. Acetylcholinesterase is also found associated with the abdominal muscles. Multiple enzyme forms are found in extracts of nervous tissues and muscles by electrophoresis and isoelectric focusing. 2. Cholinesterase is present in high activity in the stomatogastric system of P. varians. Three electrophoretically separable forms are found, having isoelectric points at pH4.2, 4.5 and 5.4. 3. Approx. 50% of the total acetylcholinesterase activity, approx. 80% of the choline acetyltransferase activity and 100% of the acetylcholine equivalents are found associated with the nervous tissue. Among the tissues examined, eyes plus stalks were the richest source of both choline acetyltransferase and acetylcholine equivalents. Suboesophageal ganglion and brain also contained large amounts of these components. 4. The distribution of these components could support the function of acetylcholine as a central and/or sensory transmitter in P. varians.  相似文献   

4.
The relationship between calcium current and transmitter release was studied in squid giant synapse. It was found that the voltage-dependent calcium current triggers the release of synaptic transmitter in direct proportion to its magnitude and duration. Transmitter release occurs with a delay of approximately 200 mus after the influx of calcium. A model is presented which describes these relations formally.  相似文献   

5.
Individual cholinoceptive neurons express high levels of different neuronal nicotinic acetylcholine receptor (nAChR) subtypes, and target them to the appropriate synaptic regions for proper function. This review focuses on the intercellular and intracellular processes that regulate nAChR expression in vertebrate peripheral nervous system (PNS) and central nervous system (CNS) neurons. Specifically, we discuss the cellular and molecular mechanisms that govern the induction and maintenance of nAChR expression-innervation, target tissue interactions, soluble factors, and activity. We define the regulatory principles of interneuronal nicotinic synapse differentiation that have emerged from these studies. We also discuss the molecular players that target nAChRs to the surface membrane and the interneuronal synapse.  相似文献   

6.
Kainate, a conformational analogue of glutamate, blocks synaptic transmission across the giant synapse of the squid. In the presence of blocking doses of kainate, impulses continue to propagate into the nerve terminal, but action potentials are slightly reduced in size and the subsequent hyperpolarization is greatly diminished. Kainate depolarizes the postsynaptic axon. Since the depolarizing action of kainate is confined to the postsynaptic membrane, it appears that kainate can combine with the receptors which are normally activated by the transmitter. This results in a diminished effect of the transmitter released by a presynaptic nerve impulse.  相似文献   

7.
Recent analyses of the genomes of several animal species, including man, have revealed that a large number of ion channels are present in the nervous system. Our understanding of the physiological role of these channels in the nervous system has followed the evolution of biophysical techniques during the last century. The observation and the quantification of the electrical events associated with the operation of the ionic channels has been, and still is, one of the best tools to analyse the various aspects of their contribution to nerve function. For this reason, we have chosen to use electrophysiological recordings to illustrate some of the main functions of these channels. The properties and the roles of Na+ and K+ channels in neuronal resting and action potentials are illustrated in the case of the giant axons of the squid and the cockroach. The nature and role of the calcium currents in the bursting behaviour of the neurons are illustrated for Aplysia giant neurons. The relationship between presynaptic calcium currents and synaptic transmission is shown for the squid giant synapse. The involvement of calcium channels in survival and neurite outgrowth of cultured neurons is exemplified using embryonic cockroach brain neurons. This same neuronal preparation is used to illustrate ion channel noise and single-channel events associated with the binding of agonists to nicotinic receptors. Some features of the synaptic activity in the central nervous system are shown, with examples from the cercal nerve giant-axon preparation of the cockroach. The interplay of different ion conductances involved in the oscillatory behaviour of the Xenopus spinal motoneurons is illustrated and discussed. The last part of this review deals with ionic homeostasis in the brain and the function of glial cells, with examples from Necturus and squids.  相似文献   

8.
Summary Acetylcholinesterase (AChE) activity was demonstrated histochemically at the electron microscopic level in the compound eye of the worker bee (Apis mellifica L.) by use of the method of Lewis and Shute (1969).All photoreceptor axons (short and long visual fibres) display AChE activity. The reaction product is located in the axoplasm and at the plasma membrane. Substantial amounts of the reaction product can be detected in the intercellular spaces between the visual fibres. Along the visual fibres, the enzyme activity is unevenly distributed. High AChE activity is present in the distal parts of the axons, in contrast to lower enzyme levels in the lamina. However, AChE is also present in the proximal terminals of the visual fibres as well as in the intercellular spaces between visual fibre terminals and the postsynaptic neurones (monopolar cells). Intracellular enzyme activity is almost absent in the monopolars.The authors assume the high AChE activity in the visual fibres to be indicative of acetylcholine as the transmitter at the first synapse of the compound eye. This hypothesis is discussed in view of the results of autoradiographic, electrophysiological and pharmacological investigations of the compound eye and of the ocellus. Our data are at variance with results of studies on the eyes of Diptera.  相似文献   

9.
1. Voltage clamp studies were performed in squid giant synapse after blockage of the voltage-dependent sodium and potassium conductances. 2. Presynaptic depolarization under these conditions demonstrates the presence of voltage-dependent calcium conductance change for the duration of the voltage step, and a tail current at the break of the pulse. 2. This calcium current triggers a postsynaptic response which can be measured directly at the postsynaptic fiber. 4. These voltage clamp experiments have allowed the development of a mathematical model that describes the kinetics of the calcium current and the relationship between calcium current and transmitter release.  相似文献   

10.
Summary The fine structure of the synapse between the second-order giant fibre and the third order-giant fibre of the squid Doryteuphis bleekeri was studied by means of electron microscope. In the synaptic region, the two giant fibres are arranged side by side. Many small processes from the third-order giant fibre penetrate the common sheath which separats the adjacent giant axons making synaptic contact with the second order giant axon.The contact surface consists of opposing two plasma membranes of adjacent axons separated by a narrow space of 20–30 m in width. The synaptic membranes are more electron dense and thicker than the other part of the axon membrane. The synaptic vesicles are concentrated exclusively in the presynaptic axon.The fine structural differences between giant synapse in the stellate ganglion of the squid and the giant-to-motor giant synapse of the crayfish were discussed.This work was supported by Grant Number B-3348 from the National Institutes of Health, United States Public Health Service, Department of Health, Education and Welfare.  相似文献   

11.
Presynaptic and postsynaptic potentials were examined by intracellular recording at a crayfish neuromuscular junction. During normal synaptic transmission, the action potentials were recorded in the terminal region of the excitatory axon and postsynaptic responses were obtained in the muscle fibers. We found that it was possible to modify the synaptic transmission by applying depolarizing or hyperpolarizing currents through the presynaptic intracellular electrode. Typically, a 7-15 mV depolarization lasting longer than 50 msec leads to a large (500%) enhancement of transmitter release, even though the preterminal action potential is reduced in amplitude. Hyperpolarization increases the amplitude of the action potential, but slightly reduces the transmitter release. These results are different from those reported for other neuromuscular synapses and the squid giant synapse, but are similar in many respects to the results reported for several invertebrate central synapses. We conclude, first, that different synapses may have markedly different responses to conditioning by membrane polarization and, secondly, that maintained low-level depolarization may induce a potentiated state in the nerve terminal, perhaps brought about by slow entry of calcium.  相似文献   

12.
《The Journal of cell biology》1995,130(6):1423-1434
ARIA is a member of a family of polypeptide growth and differentiation factors that also includes glial growth factor (GGF), neu differentiation factor, and heregulin. ARIA mRNA is expressed in all cholinergic neurons of the central nervous systems of rats and chicks, including spinal cord motor neurons. In vitro, ARIA elevates the rate of acetylcholine receptor incorporation into the plasma membrane of primary cultures of chick myotubes. To study whether ARIA may regulate the synthesis of junctional synaptic acetylcholine receptors in chick embryos, we have developed riboprobes and polyclonal antibody reagents that recognize isoforms of ARIA that include an amino-terminal immunoglobulin C2 domain and examined the expression and distribution of ARIA in motor neurons and at the neuromuscular junction. We detected significant ARIA mRNA expression in motor neurons as early as embryonic day 5, around the time that motor axons are making initial synaptic contacts with their target muscle cells. In older embryos and postnatal animals, we found ARIA protein concentrated in the synaptic cleft at neuromuscular junctions, consistent with transport down motor axons and release at nerve terminals. At high resolution using immunoelectron microscopy, we detected ARIA immunoreactivity exclusively in the synaptic basal lamina in a pattern consistent with binding to synapse specific components on the presynaptic side of the basal lamina. These results support a role for ARIA as a trophic factor released by motor neuron terminals that may regulate the formation of mature neuromuscular synapses.  相似文献   

13.
n-Aequorin J, a luminescent protein which responds to calcium concentration changes in the order of several hundred micromoles, was injected into the preterminal fiber in the squid giant synapse. The activation of the presynaptic terminal leading to release of transmitter was accompanied by light emission at well-defined sites at the active zone in the presynaptic terminal. Location of these light emission sites was very much the same from one stimulus to the next, indicating that light emission was triggered by the inward calcium current occurring at specific and invariant locations. The distribution, size and number of these QEDs (quantum emission domains) coincides well with the location and number of active zones in the presynaptic terminal. The results imply that transmitter release is triggered by very well-localized calcium concentration changes that may be as high as several hundred micromoles.  相似文献   

14.
Presynaptic potentials were studied during facilitation of transmitter release in the squid giant synapse. Changes in action potentials were found to cause some, but not all, of the facilitation during twin-pulse stimulation. During trains of action potentials, there were no progressive changes in presynaptic action potentials which could account for the growth of facilitation. Facilitation could still be detected in terminals which had undergone conditioning depolarization or hyperpolarization. Facilitation could be produced by small action potentials in low [Ca++]o and by small depolarizations in the presence of tetrodotoxin. Although the production of facilitation varied somewhat with presynaptic depolarization, nevertheless, approximately equal amounts of facilitation could be produced by depolarizations which caused the release of very different amounts of transmitter.  相似文献   

15.
Studying age-related neuropathologies in vitro requires a three-dimensional (3D) culture system presenting mature phenotypes. In this study, we aimed to determine whether aged reaggregate cultures physiologically represent mature brain tissue. Results support that embryo-derived rat central nervous system (CNS) reaggregate cultures develop into mature-like tissues, comparable to in vivo maturation, including the following characteristics: (a) progressive reduction in cell proliferation (reduced anti-Ki-67 immunoreactivity), (b) progressive restriction of long neurite growth potential (as explant cultures), and (c) increased and sustained synaptic enzyme (acetylcholine esterase, AChE) activity. The acquisition of mature-like reaggregate cultures has allowed us to pursue the hypothesis that the physiological integrity of 3D CNS cultures may be monitored by synaptic enzyme activity. To assess this hypothesis, mature-like reaggregates were exposed to H2O2, glutamate, or amyloid β(1–42); each resulted in diminished AChE activity. H2O2 exposure resulted in nuclear fragmentation. Glutamate and amyloid β(1–42) exposure resulted in acetylcholine content reduction. Simultaneous reduction of AChE activity and acetylcholine content verified diminished cholinergic integrity. This scheme exploiting synapse enzyme activity of mature-like 3D CNS tissue is therefore applicable to age-related neuropathology research including in vitro screening of conditions potentially affecting synapse integrity, including the promotion of dementia.  相似文献   

16.
Depolarization-transmitter release coupling was studied in the promotor stretch receptor/motoneuron synapse of the crab. Callinectes sapidus, a preparation in which presynaptic action potentials do not occur. Intracellular microelectrode recordings were made from the presynaptic terminal and from the somata of postsynaptic motoneurons while injecting current pulses into the peripheral stretch receptor dendrite with the aid of the sucrose-gap. 1. For short current pulses, the relationship between presynaptic potential and postsynaptic response was found to be similar to that demonstrated in the giant synapse of the squid stellate ganglion, indicating a common reliance on the properties of voltage-dependent calcium channels. 2. The crab synapse was found to be capable of continuous transmission in the range of seconds and minutes without the pronounced depletion of transmitter seen in the squid, and without inactivation of the release process (i.e., the calcium conductance is non-inactivating). 3. A graded, transient response to depolarising current in the presynaptic fibre was found to be calcium-dependent, and probably to reflect the presence of a separate, inactivating calcium conductance. 4. It was concluded that the graded response of the presynaptic membrane could function in helping to compensate for capacitative distortion of receptor potentials decrementally conducted in the sensory dendrite, and was therefore a specialisation for non-impulsive transmission.  相似文献   

17.
Spider toxin and the glutamate receptors.   总被引:3,自引:0,他引:3  
A neurotoxin (JSTX) was isolated from the venom of spider (Nephila clavata). JSTX blocked both the excitatory postsynaptic (EPSPs) and glutamate-induced potentials in lobster neuromuscular synapse and squid giant synapse. In mammalian central nervous system, JSTX blocked the EPSPs in CA1 pyramidal neurons resulting from stimulation of Schaffer collateral/commissure input. Pharmacological investigation showed that JSTX preferentially suppressed quisqualate/kainate receptor subtypes but was much less effective on NMDA receptor. Using synthesized spider toxins we studied the structure-activity relationship and found that the 2,4 dihydroxyphenylacetyl asparagine in the toxin structure was responsible for suppressive action, while the remaining part containing a polyamine was related to the agonist binding site with the polycationic part enhancing the toxic activity. Labeling of synthesized JSTX was used for histochemical as well as biochemical studies. Using autoradiography, 125I-JSTX-3 was found to bind at the lobster neuromuscular synapse. Histochemical study utilizing the interaction of biotinylated JSTX-3 with avidin showed specific binding of the toxin in rat cerebellum and hippocampus. JSTX-3-binding protein was purified from rat brain by affinity chromatography. SDS-PAGE of the affinity purified protein showed at least 4 bands ranging from 40 to 70 kDa.  相似文献   

18.
A biophysical model is proposed for the simulation of the experimentally observed calcium action potential at the squid giant synapse. It is observed that while Ca activation at the synapse is responsible for the generation of the upstroke of the action potential, a repolarizing process needs to be invoked to simulate the plateau termination and other long-time effects. Out of the likely candidates, the Ca-activated K current has been chosen as the most plausible repolarizing process. The model can reproduce all the observed features of calcium action potential excepting its behaviour after repetitive stimulation.  相似文献   

19.
Abstract: Acetyltransferase enzymatic activity was detected and measured in homogenates obtained from intact nerve fibers and their separate cellular components, in the tropical squid Sepioteuthis sepioidea. The levels of acetylcholine synthesis were determined in pooled samples of whole stellar nerve, intact giant nerve fiber, extruded axoplasm, axoplasm-free giant nerve fiber sheaths, and small nerve fibers. The values found per mg of protein for the axoplasm-free sheaths are about 3–9 times those of the extruded axoplasm, and comparable to those found for the intact giant nerve fiber. These experimental findings settle the question of whether the Schwann cells of the giant nerve fiber of S. sepioidea , under physiological conditions, contain acetyltransferase activity and are able to synthesize acetylcholine.  相似文献   

20.
Spider toxin (JSTX) on the glutamate synapse   总被引:1,自引:0,他引:1  
A new neurotoxin (JSTX) was separated from spider (Nephila clavata, Joro spider) venom. JSTX irreversibly suppressed the excitatory postsynaptic potential (EPSP) and the glutamate potential in the lobster neuromuscular junction with high degree of specificity. The threshold concentration for suppressing EPSPs corresponds to a small fraction of the toxin in a venom gland, roughly estimated as low as 10(-10) M/l. 10(-10) M/l. In the giant synapse of squid stellate ganglion JSTX suppressed EPSPs without affecting the antidromic response. Glutamate-induced membrane depolarization was blocked by JSTX. In mammalian brain slice preparation, JSTX suppressed the orthodromic spike response but failed to affect on the antidromic spike in the hippocampal pyramidal neuron of CA1 and CA3 region. The above results strongly support the view that the squid giant synapse and synapses in the hippocampal pyramidal neuron are mediated by glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号