首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eighteen genotypes of soybean were grown in five locations in Nigeria. The heritability estimates for seed yield were generally low, ranging from 22.6% to 45.3%. Joint regression analysis indicated the presence of genotype x environment, although a large proportion was non-linear. The genotypes responded differently to environments, highlighting the possibility of breeding for specific environments. The correlation of regression coefficients with mean yield indicated that high yielding genotypes were responsive to changing environments. The simultaneous selection parameters Pi, S3 and rank-sums gave somewhat similar results but Pi produced higher yielding genotypes than others. The correlation between Pi and rank-sum indicated that either of the techniques could be employed during selection.  相似文献   

2.
This study proposes a new multitrait index based on factor analysis and ideotype‐design (FAI‐BLUP index), and validates its potential on the selection of elephant grass genotypes for energy cogeneration. Factor analysis was carried out, and afterwards, factorial scores of each ideotype were designed according to the desirable and undesirable factors, and the spatial probability was estimated based on genotype‐ideotype distance, enabling genotype ranking. In order to quantify the potential of the FAI‐BLUP index, genetic gains were predicted and compared with the Smith‐Hazel classical index. The FAI‐BLUP index allows ranking the genotypes based on multitrait, free from multicollinearity, and it does not require assigning weights, as in the case of the Smith‐Hazel classical index and its derived indices. Furthermore, the genetic correlation ‐ positive or negative ‐ within each factor was taken into account, preserving their traits relationship, and giving biological meaning to the ideotypes. The FAI‐BLUP index indicated the 15 elephant grass with the highest performance for conversion to bioenergy via combustion, and predicted balanced and desirable genetic gains for all traits. In addition, the FAI‐BLUP index predicted gains of approximately 62% of direct selection, simultaneously for all traits that are desired to be increased, and approximately 33% for traits which are desired to be decreased. The genotypes selected by the FAI‐BLUP index have potential to improve all traits simultaneously, while the Smith‐Hazel classical index predicted gains of 66% for traits that are desired to be increased, and ?32% for traits that are desired to be decreased, and it does not have potential to improve all traits simultaneously. The FAI‐BLUP index provides an undoubtable selection process and can be used in any breeding programme aiming at selection based on multitrait.  相似文献   

3.
Drought is the major abiotic constraint affecting groundnut productivity and quality worldwide. Most breeding programmes in groundnut follow an empirical approach to drought resistance breeding, largely based on kernel yield and traits of local adaptation, resulting in slow progress. Recent advances in the use of easily measurable surrogates for complex physiological traits associated with drought tolerance encouraged breeders to integrate these in their selection schemes. However, there has been no direct comparison of the relative efficiency of a physiological trait‐based selection approach (Tr) vis‐à‐vis an empirical approach (E) to ascertain the benefits of the former. The genetic material used in the present study originated from three common crosses and one institute‐specific cross from four collaborating institutes in India (total seven crosses). Each institute contributed six genotypes and each followed both the Tr and E selection approaches in each cross. The field trial of all selections, consisting of 192 genotypes (96 each Tr and E selections), was grown in 2000/2001 in a 4 × 48 alpha design in 12 season × location environments in India. The selection efficiency of Tr relative to E, RETr, was estimated using the genetic concept of response to selection. Based on all the 12 environments, the two selection methods performed more or less similarly (RETr= 1.045). When the 12 environments were grouped into rainy season and post‐rainy season, the relative response to selection in Tr method was higher in the rainy than in the post‐rainy season (RETr= 1.220 vs 0.657) due to a higher genetic variance, lower G × E, and high h2. When the 12 environments were classified into four clusters based on plant extractable soil‐water availability, the selection method Tr was superior to E in three of the four clusters (RETr= 1.495, 0.612, 1.308, and 1.144) due to an increase in genetic variance and h2 under Tr in clustered environments. Although the crosses exhibited significant differences for kernel yield, the two methods of selection did not interact significantly with crosses. Both methods contributed more or less equally to the 10 highest‐yielding selections (six for E and four for Tr). The six E selections had a higher kernel yield, higher transpiration (T), and nearly equal transpiration efficiency (TE) and harvest index (HI) relative to four Tr selections. The yield advantage in E selections came largely from greater T, which would likely not be an advantage in water‐deficient environments. From the results of these multi‐environment studies, it is evident that Tr method did not show a consistent superiority over E method of drought resistance breeding in producing a higher kernel yield in groundnut. Nonetheless, the integration of physiological traits (or their surrogates) in the selection scheme would be advantageous in selecting genotypes which are more efficient water utilisers or partitioners of photosynthates into economic yield. New biotechnological tools are being explored to increase efficiency of physiological trait‐based drought resistance breeding in groundnut.  相似文献   

4.
Low heritability estimates in marginal or stress environments have often been used as one of the main justification for conducting selection work in environments with optimum or near‐optimum conditions for plant growth and grain yield. In this study, we have examined the relationships between grain yield and broad‐sense heritability in four groups of recombinant inbred lines (RILs) obtained from four barley crosses derived from parents differing in adaptation to stress. The RILs and the parents were grown in 13 combinations of years and locations (environments) in Syria and Jordan. Grain yields ranged from about 30 kg ha?1 to nearly 4000 kg ha?1 and genotype × environment interactions explained about half of the total variance for environmentally standardised data. Broad‐sense heritability in the individual year–location combinations varied from 0 to 0.68 and both the simple correlation and the rank correlation coefficients between grain yield and heritability were not significant. Genotype × years within individual locations, which measures the repeatability of a location in discriminating between genotypes, was also independent from the yield level, confirming that low‐yielding locations can be reliable selection environments. Also, there was no relationship between the type of cross and the magnitude of heritability in the various environments, but, as expected, the magnitude of heritability was significantly associated with the genetic distance between the parents. It is concluded that, holding all other factors affecting response to selection constant, concerns about the magnitude of heritability at low‐yielding locations are not justified and should not prevent them from being used as selection sites.  相似文献   

5.
Summary Maximum yield under highly unpredictable environments should be associated with selection of genotypes with superior performance across good and poor environments. Several stability parameters have been proposed to identify superior genotypes over a wide range of environments. None of these has been used as selection criteria, however, because of their low heritability. The objective of the study presented here was to compare the relative efficiency of predicted gain from indirect selection among three stability parameters: the coefficient of regression (b), deviation from regression (S d 2 ), and principal components scores (PC) from the AMMI model; two indices including mean yield and a stability parameter; and three indices involving yield at the best, the worst, and an intermediate environment. Two hundred S1 families from each of two sorghum populations (TP24D and KP9B) were evaluated at four dry-land evironments over 2 years. The low heritability estimates and the low genetic correlation between the various stability parameters and mean yield resulted in their low relative efficiency as indirect selection criteria for high yield across environments. However, when the parameters were combined with mean yield over all to create indices, the relative efficiency increased for all the environments. In terms of resource allocation, these indices were not as efficient as mean productivity, rank summation, and selection index that involved fewer environments in their estimation.Contribution no. 9820 of Agricultural Research Division, Univ. of Neb. and no. 92-203-J of Kansas Exp. Stn.  相似文献   

6.
Darwinian evolution favours genotypes with high fitness (‘survival of the fittest’). Models of quasi‐species evolution, however, suggest that in some cases selection may favour genotypes that are more robust against the impact of mutations (‘survival of the flattest’) even if these genotypes have lower fitness. I show that the opposite effect will be observed if competition occurs during development (e.g. among embryos or ovules) or before the adult phase (e.g. among the progeny of an individual). If viability is not affected by selection at these initial stages (soft selection), the genotypes that are more sensitive to the effects of mutations may increase in frequency because they get rid more easily of deleterious mutations. In a simple theoretical model of mutation and selection, genotypes located in steeper regions of the fitness surface are favoured (‘survival of the steepest’) even if they do not have higher viability, and even if they have slightly deleterious effects. Hypersensitive genes are potentially harmful for the individual, but with soft selection during the juvenile phase they persist in the genome because they reduce competition with their mutants. Soft selection occurs in practically all vascular plants and in many animals, therefore antirobustness may be a very common feature of the genome of multicellular organisms.  相似文献   

7.
Symbionts within the family Symbiodiniaceae are important on coral reefs because they provide significant amounts of carbon to many different reef species. The breakdown of this mutualism that occurs as a result of increasingly warmer ocean temperatures is a major threat to coral reef ecosystems globally. Recombination during sexual reproduction and high rates of somatic mutation can lead to increased genetic variation within symbiont species, which may provide the fuel for natural selection and adaptation. However, few studies have asked whether such variation in functional traits exists within these symbionts. We used several genotypes of two closely related species, Breviolum antillogorgium and B. minutum, to examine variation of traits related to symbiosis in response to increases in temperature or nitrogen availability in laboratory cultures. We found significant genetic variation within and among symbiont species in chlorophyll content, photosynthetic efficiency, and growth rate. Two genotypes showed decreases in traits in response to increased temperatures predicted by climate change, but one genotype responded positively. Similarly, some genotypes within a species responded positively to high‐nitrogen environments, such as those expected within hosts or eutrophication associated with global change, while other genotypes in the same species responded negatively, suggesting context‐dependency in the strength of mutualism. Such variation in traits implies that there is potential for natural selection on symbionts in response to temperature and nutrients, which could confer an adaptive advantage to the holobiont.  相似文献   

8.
Drought is a major and constantly increasing abiotic stress factor, thus limiting chickpea production. Like other crops, Kabuli Chickpea genotypes are screened for drought stress through Multi-environment trials (METs). Although, METs analysis is generally executed taking into account only one trait, which provides less significant reliability for the recommendation of genotypes as compared to multi trait-based analysis. Multi trait-based analysis could be used to recommend genotypes across diverse environments. Hence, current research was conducted for selection of superior genotypes through multi-trait stability index (MTSI) by using mixed and fixed effect models under six diverse environments. The genotypic stability was computed for all traits individually using the weighted average of absolute scores from the singular value decomposition of the matrix of best linear unbiased predictions for the genotype vs environment interaction (GEI) effects produced by a linear mixed-effect model index. A superiority index, WAASBY was measured to reflect the MPS (Mean performance and stability). The selection differential for the WAASBY index was 11.2%, 18.49% and 23.30% for grain yield (GY), primary branches per plant (PBP) and Stomatal Conductance (STOMA) respectively. Positive selection differential (0.80% ≤ selection differential ≤ 13.00%) were examined for traits averaged desired to be increased and negative (-0.57% ≤ selection differential ≤ -0.23%) for those traits desired to be reduced. The MTSI may be valuable to the plant breeders for the selection of genotypes based on many characters as being strong and simple selection process. Analysis of MTSI for multiple environments revealed that, the genotypes G20, G86, G31, G28, G116, G12, G105, G45, G50, G10, G30, G117, G81, G48, G85, G17, G32, G4, and G37 were the most stable and high yielding out of 120 chickpea genotypes, probably due to high MPS of selected traits under various environments. It is concluded that identified traits can be utilized as genitors in hybridization programs for the development of drought tolerant Kabuli Chickpea breeding material.  相似文献   

9.
Adaptive responses are probably the most effective long‐term responses of populations to climate change, but they require sufficient evolutionary potential upon which selection can act. This requires high genetic variance for the traits under selection and low antagonizing genetic covariances between the different traits. Evolutionary potential estimates are still scarce for long‐lived, clonal plants, although these species are predicted to dominate the landscape with climate change. We studied the evolutionary potential of a perennial grass, Festuca rubra, in western Norway, in two controlled environments corresponding to extreme environments in natural populations: cold–dry and warm–wet, the latter being consistent with the climatic predictions for the country. We estimated genetic variances, covariances, selection gradients and response to selection for a wide range of growth, resource acquisition and physiological traits, and compared their estimates between the environments. We showed that the evolutionary potential of F. rubra is high in both environments, and genetic covariances define one main direction along which selection can act with relatively few constraints to selection. The observed response to selection at present is not sufficient to produce genotypes adapted to the predicted climate change under a simple, space for time substitution model. However, the current populations contain genotypes which are pre‐adapted to the new climate, especially for growth and resource acquisition traits. Overall, these results suggest that the present populations of the long‐lived clonal plant may have sufficient evolutionary potential to withstand long‐term climate changes through adaptive responses.  相似文献   

10.
Computer simulations were used to study the efficiency of MAS for breeding self-fertilizing crops, based on a general model including additive, dominance and epistasis. It was shown that MAS not only gave larger genetic responses but also dramatically increased the frequencies of superior genotypes as compared with phenotypic selection. However, the advantages of MAS over phenotypic selection were considerably reduced when conducting selection in later generations. A modified method combining MAS in early generations with phenotypic selection in later generations was thus proposed from an efficiency standpoint. We also proposed a potential index to measure the probability of an individual showing superior genotypes under selfing. It was apparent that more superior genotypes could be derived from selection by using the potential index than by using other methods. The implications of these findings for plant breeding are discussed.Communicated by H.C. Becker  相似文献   

11.
Although genomic selection offers the prospect of improving the rate of genetic gain in meat, wool and dairy sheep breeding programs, the key constraint is likely to be the cost of genotyping. Potentially, this constraint can be overcome by genotyping selection candidates for a low density (low cost) panel of SNPs with sparse genotype coverage, imputing a much higher density of SNP genotypes using a densely genotyped reference population. These imputed genotypes would then be used with a prediction equation to produce genomic estimated breeding values. In the future, it may also be desirable to impute very dense marker genotypes or even whole genome re‐sequence data from moderate density SNP panels. Such a strategy could lead to an accurate prediction of genomic estimated breeding values across breeds, for example. We used genotypes from 48 640 (50K) SNPs genotyped in four sheep breeds to investigate both the accuracy of imputation of the 50K SNPs from low density SNP panels, as well as prospects for imputing very dense or whole genome re‐sequence data from the 50K SNPs (by leaving out a small number of the 50K SNPs at random). Accuracy of imputation was low if the sparse panel had less than 5000 (5K) markers. Across breeds, it was clear that the accuracy of imputing from sparse marker panels to 50K was higher if the genetic diversity within a breed was lower, such that relationships among animals in that breed were higher. The accuracy of imputation from sparse genotypes to 50K genotypes was higher when the imputation was performed within breed rather than when pooling all the data, despite the fact that the pooled reference set was much larger. For Border Leicesters, Poll Dorsets and White Suffolks, 5K sparse genotypes were sufficient to impute 50K with 80% accuracy. For Merinos, the accuracy of imputing 50K from 5K was lower at 71%, despite a large number of animals with full genotypes (2215) being used as a reference. For all breeds, the relationship of individuals to the reference explained up to 64% of the variation in accuracy of imputation, demonstrating that accuracy of imputation can be increased if sires and other ancestors of the individuals to be imputed are included in the reference population. The accuracy of imputation could also be increased if pedigree information was available and was used in tracking inheritance of large chromosome segments within families. In our study, we only considered methods of imputation based on population‐wide linkage disequilibrium (largely because the pedigree for some of the populations was incomplete). Finally, in the scenarios designed to mimic imputation of high density or whole genome re‐sequence data from the 50K panel, the accuracy of imputation was much higher (86–96%). This is promising, suggesting that in silico genome re‐sequencing is possible in sheep if a suitable pool of key ancestors is sequenced for each breed.  相似文献   

12.
Kin selection theory predicts that costly cooperative behaviors evolve most readily when directed toward kin. Dispersal plays a controversial role in the evolution of cooperation: dispersal decreases local population relatedness and thus opposes the evolution of cooperation, but limited dispersal increases kin competition and can negate the benefits of cooperation. Theoretical work has suggested that plasticity of dispersal, where individuals can adjust their dispersal decisions according to the social context, might help resolve this paradox and promote the evolution of cooperation. Here, we experimentally tested the hypothesis that conditional dispersal decisions are mediated by a cooperative strategy: we quantified the density‐dependent dispersal decisions and subsequent colonization efficiency from single cells or groups of cells among six genetic strains of the unicellular Tetrahymena thermophila that differ in their aggregation level (high, medium, and low), a behavior associated with cooperation strategy. We found that the plastic reaction norms of dispersal rate relative to density differed according to aggregation level: highly aggregative genotypes showed negative density‐dependent dispersal, whereas low‐aggregation genotypes showed maximum dispersal rates at intermediate density, and medium‐aggregation genotypes showed density‐independent dispersal with intermediate dispersal rate. Dispersers from highly aggregative genotypes had specialized long‐distance dispersal phenotypes, contrary to low‐aggregation genotypes; medium‐aggregation genotypes showing intermediate dispersal phenotype. Moreover, highly aggregation genotypes showed evidence for beneficial kin‐cooperation during dispersal. Our experimental results should help to resolve the evolutionary conflict between cooperation and dispersal: cooperative individuals are expected to avoid kin‐competition by dispersing long distances, but maintain the benefits of cooperation by dispersing in small groups.  相似文献   

13.
Plant domestication provides striking examples of rapid evolution. Yet, it involves more complex processes than plain directional selection. Understanding the dynamics of diversity in traditional agroecosystems is both a fundamental goal in evolutionary biology and a practical goal in conservation. We studied how Amerindian cultivators maintain dynamically evolving gene pools in cassava. Farmers purposely maintain diversity in the form of phenotypically distinct, clonally propagated landraces. Landrace gene pools are continuously renewed by incorporating seedlings issued from spontaneous sexual reproduction. This poses two problems: agronomic quality may decrease because some seedlings are inbred, and landrace identity may be progressively lost through the incorporation of unrelated seedlings. Using a large microsatellite dataset, we show that farmers solve these problems by applying two kinds of selection: directional selection against inbred genotypes, and counter‐selection of off‐type phenotypes, which maintains high intra‐landrace relatedness. Thus, cultural elements such as ideotypes (a representation of the ideal phenotype of a landrace) can shape genetic diversity.  相似文献   

14.
Understanding fluctuating selection is important for our understanding of patterns of spatial and temporal diversity in nature. Host–parasite theory has classically assumed fluctuations either occur between highly specific genotypes (matching allele: MA) or from specialism to generalism (gene‐for‐gene: GFG). However, while MA can only generate one mode of fluctuating selection, we show that GFG can in fact produce both rapid ‘within‐range’ fluctuations (among genotypes with identical levels of investment but which specialise on different subsets of the population) and slower cycling ‘between ranges’ (different levels of investment), emphasising that MA is a subset of GFG. Our findings closely match empirical observations, although sampling rates need to be high to detect these novel dynamics empirically. Within‐range cycling is an overlooked process by which fluctuating selection can occur in nature, suggesting that fluctuating selection may be a more common and important process than previously thought in generating and maintaining diversity.  相似文献   

15.
In perennial energy crop breeding programmes, it can take several years before a mature yield is reached when potential new varieties can be scored. Modern plant breeding technologies have focussed on molecular markers, but for many crop species, this technology is unavailable. Therefore, prematurity predictors of harvestable yield would accelerate the release of new varieties. Metabolic biomarkers are routinely used in medicine, but they have been largely overlooked as predictive tools in plant science. We aimed to identify biomarkers of productivity in the bioenergy crop, Miscanthus, that could be used prognostically to predict future yields. This study identified a metabolic profile reflecting productivity in Miscanthus by correlating the summer carbohydrate composition of multiple genotypes with final yield 6 months later. Consistent and strong, significant correlations were observed between carbohydrate metrics and biomass traits at two separate field sites over 2 years. Machine‐learning feature selection was used to optimize carbohydrate metrics for support vector regression models, which were able to predict interyear biomass traits with a correlation (R) of >0.67 between predicted and actual values. To identify a causal basis for the relationships between the glycome profile and biomass, a 13C‐labelling experiment compared carbohydrate partitioning between high‐ and low‐yielding genotypes. A lower yielding and slower growing genotype partitioned a greater percentage of the 13C pulse into starch compared to a faster growing genotype where a greater percentage was located in the structural biomass. These results supported a link between plant performance and carbon flow through two rival pathways (starch vs. sucrose), with higher yielding plants exhibiting greater partitioning into structural biomass, via sucrose metabolism, rather than starch. Our results demonstrate that the plant metabolome can be used prognostically to anticipate future yields and this is a method that could be used to accelerate selection in perennial energy crop breeding programmes.  相似文献   

16.
Egg‐to‐adult viability is studied in the progeny of the flies of different genotypes according to S and F alleles of Amy locus of Drsophila subobscura . This component of fitness is observed in the single and mixed cultures with various frequencies of three genotypes (S/S, F/F and S/F) under conditions of low (LD) and high densities (HD) on three types of media with different carbohydrate composition. In such multifactorial experimental conditions, density‐ and frequency‐dependent selection on certain Amy genotypes was observed. Genotype frequencies and carbohydrate composition have significant effect on the viability of Amy genotypes. The significant intergenotypic differences exist, mostly at HD conditions. The heterozygous genotype S/F has generally lower viability which decreases with its increased frequencies, on all media at LD or HD. The results suggest a high level of complexity and interaction between these two types of balanced selection.  相似文献   

17.
Gamete‐recognition proteins often, but not always, evolve rapidly. We explored how variation in sperm bindin influences reproductive success of the sea urchin Strongylocentrotus purpuratus during group spawning in the sea. Despite large variation in male and female abundance and neighbor distances, males with common genotypes had higher reproductive success than males with rare genotypes. However, males with a relatively uncommon proline‐for‐serine substitution were the most successful. Females also showed a fitness consequence of sperm‐bindin genotype, suggesting linkage disequilibrium between the sperm‐bindin locus and the egg receptor locus. Females with common genotypes had higher reproductive success than rare genotypes, but females with relatively uncommon insertions were most successful. Overall, these results suggest that rare male proteins are selected against, as supported by molecular evidence of purifying selection and probably caused by poor matches to the female receptor protein. Within the pool of moderately common to common alleles, however, individuals with less‐common functional variants were favored and probably maintained by negative frequency‐dependent selection. These results support the hypothesis that sperm availability and sexual conflict influence the evolution of gamete recognition systems in broadcast spawners and highlight the benefits of combining fitness measures with molecular signatures for estimation of patterns of selection.  相似文献   

18.
  • Salinity is one of the most severe environmental stresses, negatively affecting productivity of salt‐sensitive crop species. Given that germination is the most critical phase in the plant life cycle, the present study aimed to determine seed germination potential and associated traits under salt stress conditions as a simple approach to identify salt‐tolerant lentil genotypes.
  • The genetic material consisted of six lentil genotypes whose adaptation to various agroclimatic conditions is not well elucidated. Salinity stress was applied by addition of NaCl at three different levels of stress, while non‐stressed plants were included as controls. Evaluation of tolerance was performed on the basis of germination percentage, seed water absorbance, root and shoot length, seedling water content, seedling vigour index and number of seedlings with an abnormal phenotype.
  • Overall, our findings revealed that salinity stress substantially affects all traits associated with germination and early seedling growth, with the effect of salinity being dependent on the level of stress applied. It is noteworthy, however, that genotypes responded differently to the varying salinity levels. In this context, Samos proved the most salt‐tolerant genotype, indicating its possible use for cultivation under stress conditions.
  • In conclusion, the determination of seed germination and early growth potential may be exploited as an efficient strategy to reveal genetic variation in lentil germplasm of unknown tolerance to salinity stress. This approach allows selection of desirable genotypes at early growth stages, thus enabling more efficient application of various breeding methods to achieve stress‐tolerant lentil genotypes.
  相似文献   

19.
In tropical countries, high temperature stress is the major abiotic stress, which controls the productivity and yield of crop plants. Two high yielding and low yielding genotypes of durum wheat were selected for detailed analysis of their photochemical efficiencies. In low yielding genotypes (Malvi local and Sawer local), the whole primary photochemical reactions are affected before and after heat stress. The results show that low yielding genotypes show less efficiency in the usage of the available excitation energy. This is a case study to establish use of chlorophyll a fluorescence measurement as an effective tool to screen plants for their stress tolerance. The study is important for stress physiology and may be useful for assessment of stress tolerant plants.  相似文献   

20.
Summary This paper describes a rounding procedure to improve the efficiency of index selection. The procedure involves performing canonical variate analysis on the phenotypic and genotypic variances of a group of traits estimated from a progeny test experiment. The eigenvectors corresponding to the significant eigenvalues are used to transform the original traits into a set of independent variables. The selection index is then constructed based on the new set of variables. The efficiency of the new index is expected to be improved by rounding off the variables associated with the insignificant eigenvalues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号