首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Martin CA  Stutz JC 《Mycorrhiza》2004,14(4):241-244
Capsicum annuum (pepper) plants were inoculated with the arbuscular mycorrhizal (AM) fungi Glomus intraradices Smith and Schenck, an undescribed Glomus sp. (AZ 112) or a mixture of these isolates. Control plants were non-mycorrhizal. Plants were grown for 8 weeks at moderate (20.7–25.4°C) or high (32.1–38°C) temperatures. Colonization of pepper roots by G. intraradices or the Glomus isolate mixture was lower at high than at moderate temperatures, but colonization by Glomus AZ112 was somewhat increased at high temperatures. Pepper shoot and root dry weights and leaf P levels were affected by an interaction between temperature and AM fungal treatments. At moderate temperatures, shoot dry weights of plants colonized by the Glomus isolate mixture or non-AM plants were highest, while root dry weights were highest for non-AM plants. At high temperatures, plants colonized by Glomus AZ112 or the non-AM plants had the lowest shoot and root dry weights. AM plants had generally higher leaf P levels at moderate temperatures and lower P levels at high temperatures than non-AM plants. AM plants also had generally higher specific soil respiration than non-AM plants regardless of temperature treatment. At moderate temperatures, P uptake by all AM plants was enhanced relative to non-AM plants but there was no corresponding enhancement of growth, possibly because less carbon was invested in root growth or root respiratory costs increased. At high temperatures, pepper growth with the G. intraradices isolate and the Glomus isolate mixture was enhanced relative to non-AM controls, despite reduced levels of AM colonization and, therefore, apparently less fungal P transfer to the plant.  相似文献   

2.
Three arbuscular mycorrhizal (AM) fungi (Glomus mosseae, Glomus claroideum, and Glomus intraradices) were compared for their root colonizing ability and activity in the root of Astragalus sinicus L. under salt-stressed soil conditions. Mycorrhizal formation, activity of fungal succinate dehydrogenase, and alkaline phosphatase, as well as plant biomass, were evaluated after 7 weeks of plant growth. Increasing the concentration of NaCl in soil generally decreased the dry weight of shoots and roots. Inoculation with AM fungi significantly alleviated inhibitory effect of salt stress. G. intraradices was the most efficient AM fungus compared with the other two fungi in terms of root colonization and enzyme activity. Nested PCR revealed that in root system of plants inoculated with a mix of the three AM fungi and grown under salt stress, the majority of mycorrhizal root fragments were colonized by one or two AM fungi, and some roots were colonized by all the three. Compared to inoculation alone, the frequency of G. mosseae in roots increased in the presence of the other two fungal species and highest level of NaCl, suggesting a synergistic interaction between these fungi under salt stress.  相似文献   

3.
A greenhouse experiment was conducted to evaluate the effectiveness of arbuscular mycorrhizal (AM) fungi in phytoremediation of lead (Pb)-contaminated soil by vetiver grass. Experiment was a factorial arranged in a completely randomized design. Factors included four Pb levels (50, 200, 400, and 800 mg kg?1) as Pb (NO3)2, AM fungi at three levels (non mycorrhizal (NM) control, Rhizophagus intraradices, Glomus versiforme). Shoot and root dry weights (SDW and RDW) decreased as Pb levels increased. Mycorrhizal inoculation increased SDW and RDW compared to NM control. With mycorrhizal inoculation and increasing Pb levels, Pb uptake of shoot and root increased compared to those of NM control. Root colonization increased with mycorrhizal inoculation but decreased as Pb levels increased. Phosphorus concentration and uptake in shoot of plants inoculated with AM fungi was significantly higher than NM control at 200 and 800 mg Pb kg?1. The Fe concentration, Fe and Mn uptake of shoot in plants inoculated with Rhizophagus intraradices in all levels of Pb were significantly higher than NM control. Mycorrhizal inoculation increased Pb extraction, uptake and translocation efficiencies. Lead translocation factor decreased as Pb levels increased; however inoculation with AM fungi increased Pb translocation.  相似文献   

4.
低温胁迫下丛枝菌根真菌对玉米光合特性的影响   总被引:8,自引:2,他引:8  
利用盆栽试验,在15 ℃和5 ℃低温胁迫下研究了丛枝菌根(AM)真菌对玉米生长、叶绿素含量、叶绿素荧光和光合作用的影响.结果表明:低温胁迫抑制了AM真菌的侵染;接种AM真菌的玉米地上部和地下部干物质量、相对叶绿素含量高于不接种植株.与非菌根玉米相比,菌根玉米具有较高的最大荧光(Fm)、可变荧光(Fv)、最大光化学效率(Fv/Fm)和潜在光化学效率(Fv/Fo)及较低的初始荧光(Fo),并且在5 ℃处理中差异显著.接种AM真菌使玉米叶片的净光合速率(Pn)和蒸腾速率(Tr)显著增强;低温胁迫下,菌根植株的气孔导度(Gs)显著高于非菌根植株;而胞间CO2浓度(Ci)显著低于非菌根植株.表明AM真菌可通过提高叶绿素含量及改善叶片叶绿素荧光和光合作用来减轻低温胁迫对玉米植株造成的伤害,提高玉米耐受低温的能力,进而提高玉米的生物量,促进玉米生长.  相似文献   

5.
 The effect of the saprobe fungi Wardomyces inflatus (Marchal) Hennebert, Paecilomyces farinosus (Holm & Gray) A. H. S. Brown & G. Sm., Gliocladium roseum Bain., Trichoderma pseudokoningii Rifai and T. harzianum Rifai, isolated from sporocarps of Glomus mosseae, on arbuscular mycorrhizal (AM) colonisation and plant dry matter of soybean was studied in 2/3 and 1/5 diluted soils in a greenhouse trial. Soil dilution to 1/5 had no effect on shoot dry matter of soybean but decreased AM colonisation and root dry weight of plants. CFU of saprobe fungi, except T. harzianum, were higher in 1/5 than in 2/3 diluted soils. W. inflatus and Gliocladium roseum decreased the shoot dry weight of soybean plant when inoculated together with Glomus mosseae. The saprobe fungi P. farinosus and T. pseudokoningii increased the shoot dry weights of plants grown in 1/5 diluted soil. The shoot dry weight and AM colonisation in 1/5 diluted soil were also increased when T. harzianum was inoculated together with Glomus mosseae. Thus, saprobe fungi increased AM colonisation of soybean plants by indigenous endophytes. The AM colonisation of plants at both soil dilutions was increased by Glomus mosseae. The highest level of AM colonisation was observed when P. farinosus and T. pseudokoningii were inoculated together Glomus mosseae. The dilution of soils influenced the interaction between inoculated microorganisms and their effect on plant growth. Accepted: 7 June 1999  相似文献   

6.
Audet P  Charest C 《Mycorrhiza》2006,16(4):277-283
This greenhouse study aimed to determine the effect of colonization by the arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) on the “wild” tobacco (Nicotiana rustica L. var. Azteca), under soil–zinc (Zn) conditions. Plants of N. rustica were grown in AM or non-AM inoculated substrate and subjected to four soil–[Zn] concentrations (0, 50, 100, and 250 mg Zn kg−1 dry soil). The AM root colonization increased markedly from 14 to 81% with the increasing soil–[Zn] and the mycorrhizal structures were significantly more abundant at the highest soil–[Zn], suggesting that Zn may be involved directly or indirectly in AM root colonization. In addition, total Zn content or Zn concentrations in shoots and roots were shown to increase as soil–[Zn] increased in both AM and non-AM plants. As for the growth parameters studied, there were no significant differences between treatments despite the increase in Zn content or concentration. The AM roots subjected to the highest soil–[Zn] had a significant reduction by about 50% of total Zn content and Zn concentration compared to non-AM roots. Still, the relative extracted Zn percentage decreased dramatically as soil–[Zn] increased. Soil pH was significantly lower in non-AM than AM treatments at the highest soil–[Zn]. In summary, AM plants (particularly roots) showed lower Zn content and concentration than non-AM plants. In this regard, the AM fungi have a protective role for the host plant, thus playing an important role in soil-contaminant immobilization processes; and, therefore, are of value in phytoremediation, especially when heavy metals approach toxic levels in the soil.  相似文献   

7.
Shi ZY  Chen YL  Feng G  Liu RJ  Christie P  Li XL 《Mycorrhiza》2006,16(2):81-87
Species richness, spore density, frequency of occurrence, and relative abundance of AM fungi were determined in rhizosphere soil samples from nine tropical rainforest sites on Hainan island, south China, and the arbuscular mycorrhizal (AM) status of members of the Meliaceae was examined. All 28 plant taxa investigated (25 species including two varieties of 1 species and three varieties of another) were colonized by AM fungi. The mean proportion of root length colonized was 56% (range 10–95%). Vesicles were observed in 27 and hyphal coils in 26 of the 28 plant taxa. Mycorrhizas were of the Paris-type or intermediate-type, with no Arum-type mycorrhizas observed. Species richness of AM fungi varied from 3 to 15 and spore density from 46 to 1,499 per 100 g rhizosphere soil. Of 33 AM fungal taxa in five genera isolated and identified, 18 belonged to Glomus, 9 to Acaulospora, 1 to Entrophospora, 2 to Gigaspora, and 3 to Scutellospora. Acaulospora and Glomus were the dominant genera identified. Glomus claroideum was the taxon most commonly isolated, with a frequency of occurrence of 56.5% and relative abundance of 10.4%. A positive correlation was found between percentage of root length colonization and species richness. However, there was no correlation between spore density and percentage of root length colonized by AM fungi.  相似文献   

8.
We studied the production of xyloglucanase enzymes of pea and lettuce roots in the presence of saprobe and arbuscular mycorrhizal (AM) fungi. The AM fungus Glomus mosseae and the saprobe fungi Fusarium graminearum, Fusarium oxysporum-126, Trichoderma harzianum, Penicillium chrysogenum, Pleurotus ostreatus and Aspergillus niger were used. G. mosseae increased the shoot and root dry weight of pea but not of lettuce. Most of the saprobe fungi increased the level of mycorrhization of pea and lettuce, but only P. chrysogenum and T. harzianum inoculated together with G. mosseae increased the dry weight of pea and lettuce respectively. The AM and saprobe fungi increased the production of xyloglucanases by plant roots. The level of xyloglucanase activities and the number of xyloglucanolytic isozymes in plants inoculated with G. mosseae and most of the saprobe fungi tested were higher than when both microorganisms were inoculated separately. The possible relationship between xylogucanase activities and the ability of AM and saprobe fungi to improve the dry weight and AM root colonization of plants was discussed.  相似文献   

9.
该研究以入侵植物黄顶菊[Flaveria bidentis(L.)Kunt]和本土伴生植物狗尾草为材料,通过筛选出黄顶菊单一优势群落AM真菌,于温室盆栽条件下,采用2物种单播、混播以及接种AM真菌和不接种共6个处理,分析AM真菌对黄顶菊和狗尾草的根系侵染率、相对竞争强度、植株氮磷钾光合利用率、以及丙二醛含量和保护酶活性的影响,探讨AM真菌对黄顶菊与狗尾草竞争生长的机理。结果显示:(1)黄顶菊根际土壤AM真菌共包括4属10种,其中优势种为Glomus constrictum、Glomus perpusillum、Glomus reticulatum;盆栽接种AM真菌后,黄顶菊的根系侵染率显著高于本土伴生植物狗尾草,但接种AM真菌后黄顶菊相对竞争强度显著降低了29.57%,却对狗尾草相对竞争强度无显著影响。(2)接种AM真菌使黄顶菊植株光合氮、磷、钾利用率显著升高,但对伴生植物狗尾草的光合氮、磷、钾利用率均无显著影响。(3)接种AM真菌对黄顶菊植株POD和CAT活性以及MDA含量无显著影响,但显著增加了SOD和APX活性,而伴对生植物狗尾草的POD、CAT和APX活性均显著降低,MDA含量显著提高。研究表明,AM真菌对黄顶菊和狗尾草具有不同的选择性,AM真菌的定植促进了黄顶菊的竞争生长,增加了植株N、P含量、光合养分利用率以及抗氧化酶活性;但显著降低了本土伴生植物狗尾草的N、P吸收以及抗氧化酶活性。因此,AM真菌在竞争生长中对黄顶菊产生了偏利反馈,有助于黄顶菊的入侵。  相似文献   

10.
To better understand the behavior of selected vesicular-arbuscular mycorrhizal (VAM) isolates in the field, we documented the growth of roots, root hairs, and VAM colonization of inoculated and noninoculated sweet potato plants (Ipomea batatas (L.) Lam. cv White Star) over a growing season. We also determined the seasonal dynamics of P and Zn uptake, and shoot and storage-root growth. Shoot cuttings were inoculated with an isolate of either Glomus etunicatum Becker and Gerdemann or Acaulospora rugosa Mortan, or were not inoculated, and were harvested 2, 4, 8, 13, 20, and 27 weeks after planting (WAP). At each harvest, roots were sampled at 0 to 30, 30 to 60, and 60 to 90 cm depths and at 0, 23, 83, and 116 cm from the base of the shoot. At the end of the study, the roots of three non-inoculated plants were sampled by soil horizon. Inoculation had no affect on shoot growth or total shoot uptake of P and Zn; shoot dry mass and P and Z content increased rapidly up to 20 WAP, while shoot length continued to increase through 27 WAP. Shoot-P concentration of plants inoculated with A. rugosa at 2 and 8 WAP were higher than the noninoculated plants, while shoot-Zn concentration was not affected by inoculation. Storage-root yields of inoculated plants were higher than yields for noninoculated plants. Root length density, and percentage of root length with root hairs and VAM colonization were highest and most dynamic near the base of the plant. Percentage of root length colonization by VAM fungi was highest in the E2 horizon, intermediate in the Bh horizon, and lowest in the Ap horizon. Percentage of root length with root hairs had the opposite pattern. Intensive measurements of root characteristics close to the base of the plant, and shoot P-content and concentration during the period of rapid yield production, provided the most useful data for evaluating the activity of effective isolates.Published as Florida Agricultural Experimental Station Journal Series No. R-02576  相似文献   

11.
Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil   总被引:3,自引:0,他引:3  
García IV  Mendoza RE 《Mycorrhiza》2007,17(3):167-174
The seasonality of arbuscular mycorrhizal (AM) fungi–plant symbiosis in Lotus glaber Mill. and Stenotaphrum secundatum (Walt.) O.K. and the association with phosphorus (P) plant nutrition were studied in a saline-sodic soil at the four seasons during a year. Plant roots of both species were densely colonized by AM fungi (90 and 73%, respectively in L. glaber and S. secundatum) at high values of soil pH (9.2) and exchangeable sodium percentage (65%). The percentage of colonized root length differed between species and showed seasonality. The morphology of root colonization had a similar pattern in both species. The arbuscular colonization fraction increased at the beginning of the growing season and was positively associated with increased P concentration in both shoot and root tissue. The vesicular colonization fraction was high in summer when plants suffer from stress imposed by high temperatures and drought periods, and negatively associated with P in plant tissue. Spore and hyphal densities in soil were not associated with AM root colonization and did not show seasonality. Our results suggest that AM fungi can survive and colonize L. glaber and S. secundatum roots adapted to extreme saline-sodic soil condition. The symbiosis responds to seasonality and P uptake by the host altering the morphology of root colonization.  相似文献   

12.
Nontimber forest products (NTFPs) represent an important source of income to millions of people in tropical forest regions, but some NTFP species have decreased in number and become endangered due to overexploitation. There is increasing concern that the planting stocks of Dyera polyphylla and Aquilaria filaria are not sufficient to sustain the yield of NTFPs and promote forest conservation. The objective of this study was to determine the effect of two arbuscular mycorrhizal (AM) fungi, Glomus clarum and Gigaspora decipiens, on the early growth of two NTFP species, D. polyphylla and A. filaria, under greenhouse conditions. The seedlings of both species were inoculated with G. clarum or G. decipiens, or uninoculated (control) under greenhouse conditions. Percentage of AM colonization, plant growth, survival rate, and nitrogen (N) and phosphorus (P) concentrations were measured after 180 days of growth. The percentage of AM colonization of D. polyphylla and A. filaria ranged from 87 to 93% and from 22 to 39%, respectively. Colonization by G. clarum and G. decipiens increased plant height, diameter, and shoot and root dry weights. Shoot N and P concentrations of the seedlings were increased by AM colonization by as much as 70–153% and 135–360%, respectively. Survival rates were higher in the AM-colonized seedlings at 180 days after transplantation than in the control seedlings. The results suggest that AM fungi can accelerate the establishment of the planting stocks of D. polyphylla and A. filaria, thereby promoting their conservation ecologically and sustaining the production of these NTFPs economically.  相似文献   

13.
The role of arbuscular mycorrhizal (AM) fungi in aquatic and semi-aquatic environments is poorly understood, although they may play a significant role in the establishment and maintenance of wetland plant communities. We tested the hypothesis that AM fungi have little effect on plant response to phosphorus (P) supply in inundated soils as evidenced by an absence of increased plant performance in inoculated (AM+) versus non-inoculated (AM-) Lythrum salicaria plants grown under a range of P availabilities (0-40 mg/l P). We also assessed the relationship between P supply and levels of AM colonization under inundated conditions. The presence of AM fungi had no detectable benefit for any measures of plant performance (total shoot height, shoot dry weight, shoot fresh weight, root fresh weight, total root length or total root surface area). AM+ plants displayed reduced shoot height at 10 mg/l P. Overall, shoot fresh to dry weight ratios were higher in AM+ plants although the biological significance of this was not determined. AM colonization levels were significantly reduced at P concentrations of 5 mg/l and higher. The results support the hypothesis that AM fungi have little effect on plant response to P supply in inundated conditions and suggest that the AM association can become uncoupled at relatively high levels of P supply.  相似文献   

14.
水分胁迫下AM真菌对沙打旺生长和抗旱性的影响   总被引:7,自引:0,他引:7  
郭辉娟  贺学礼 《生态学报》2010,30(21):5933-5940
利用盆栽试验研究了水分胁迫条件下接种AM真菌对优良牧草和固沙植物沙打旺(Astragalus adsurgens Pall.)生长和抗旱性的影响。在土壤相对含水量为70%、50%和30%条件下,分别接种摩西球囊霉(Glomus mosseae)和沙打旺根际土著菌,不接种处理作为对照。结果表明,水分胁迫显著降低了沙打旺植株(无论接种AM真菌与否)的株高、分枝数、地上部干重和地下部干重,并显著提高了土著AM真菌的侵染率,对摩西球囊霉的侵染率无显著影响。接种AM真菌可以促进沙打旺生长和提高植株抗旱性,但促进效应因土壤含水量和菌种不同而存在差异。不同水分条件下,接种AM真菌显著提高了植株菌根侵染率、根系活力、地下部全N含量和叶片CAT活性。土壤相对含水量为30%和50%时,接种株地上部全N、叶片叶绿素、可溶性蛋白、脯氨酸含量和POD活性显著高于未接种株;接种AM真菌显著降低了叶片MDA含量;接种土著AM真菌的植株株高、分枝数、地上部和地下部干重显著高于未接种株。土壤相对含水量为30%时,接种AM真菌显著增加了地上部全P含量和叶片相对含水量;接种摩西球囊霉的植株株高、分枝数、地上部和地下部干重显著高于未接种株。水分胁迫40d,接种AM真菌显著提高了叶片可溶性糖含量。水分胁迫80d,接种株叶片SOD活性显著增加。菌根依赖性随水分胁迫程度增加而提高。沙打旺根际土著菌接种效果优于摩西球囊霉。水分胁迫和AM真菌的交互作用对分枝数、菌根侵染率、叶片SOD、CAT和POD活性、叶绿素、脯氨酸、可溶性蛋白、地上部全N和全P、地下部全N和根系活力有极显著影响,对叶片丙二醛和地下部全P有显著影响。AM真菌促进根系对土壤水分和矿质营养的吸收,改善植物生理代谢活动,从而提高沙打旺抗旱性,促进其生长。试验结果为筛选优良抗旱菌种,充分利用AM真菌资源促进荒漠植物生长和植被恢复提供了依据。  相似文献   

15.
Plant growth-promoting rhizobacteria (PGPR) that produce antifungal metabolites are potential threats for the arbuscular mycorrhizal (AM) fungi known for their beneficial symbiosis with plants that is crucially important for low-input sustainable agriculture. To address this issue, we used a compartmented container system where test plants, Vigna radiata, could only reach a separate nutrient-rich compartment indirectly via the hyphae of AM fungi associated with their roots. In this system, where plants depended on nutrient uptake via AM symbiosis, we explored the impact of various PGPR. Plants were inoculated with or without a consortium of four species of AM fungi (Glomus coronatum, Glomus etunicatum, Glomus constrictum, and Glomus intraradices), and one or more of the following PGPR strains: phenazine producing (P+) and phenazine-less mutant (P), diacetylphloroglucinol (DAPG) producing (G+) and DAPG-less mutant (G) strains of Pseudomonas fluorescens, and an unknown antifungal metabolite-producing Alcaligenes faecalis strain, SLHRE425 (D). PGPR exerted only a small if any effect on the performance of AM symbiosis. G+ enhanced AM root colonization and had positive effects on shoot growth and nitrogen content when added alone, but not in combination with P+. D negatively influenced AM root colonization, but did not affect nutrient acquisition. Principal component analysis of all treatments indicated correlation between root weight, shoot weight, and nutrient uptake by AM fungus. The results indicate that antifungal metabolites producing PGPR do not necessarily interfere with AM symbiosis and may even promote it thus carefully chosen combinations of such bioinoculants could lead to better plant growth.  相似文献   

16.
The interaction between Trichoderma pseudokoningii (Rifai) 511, 2212, 741A, 741B and 453 and the arbuscular mycorrhizal fungi Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe BEG12 and Gigaspora rosea Nicolson & Schenck BEG9 were studied in vitro and in greenhouse experiments. All T. pseudokoningii strains inhibited the germination of G. mosseae and Gi. rosea except the strain 453, which did not affect the germination of Gi. rosea. Soluble exudates and volatile substances produced by all T. pseudokoningii strains inhibited the spore germination of G. mosseae. The germination of Gi. rosea spores was inhibited by the soluble exudates produced by T. pseudokoningii 2212 and 511, whereas T. pseudokoningii 714A and 714B inhibited the germination of Gi. rosea spores by the production of volatile substances. The strains of T. pseudokoningii did not affect dry matter and percentage of root length colonization of soybean inoculated with G. mosseae, except T. pseudokoningii 2212, which inhibited both parameters. However, all T. pseudokoningii strains decreased the shoot dry matter and the percentage of AM root length colonization of soybean inoculated with Gi. rosea. The saprotrophic fungi tested seem to affect AM colonization of root by effects on the presymbiotic phase of the AM fungi. No influence of AM fungi on the number of CFUs of T. pseudokoningii was found. The effect of saprotrophic fungi on AM fungal development and function varied with the strain of the saprotrophic species tested.  相似文献   

17.
The survival and development of two inoculant ectomycorrhizal fungi (Hebeloma westraliense Bough. Tom. and Mal. and Setchelliogaster sp. nov.) on roots of outplanted Eucalyptus globulus Labill. was examined at two expasture field sites in the south-west of Western Australia. Site 1 was a gravelly yellow duplex soil, and Site 2 was a yellow sandy earth. Plants were grown in steamed or unsteamed soil, in root bags designed as field containers for young growing trees. Three, 6 and 12 months after outplanting, plants were removed from these bags and assessed for dry weights of shoots and ectomycorrhizal colonization of roots.The inoculant ectomycorrhizal fungi (identified on the basis of the colour and morphology of their mycorrhizas) survived on roots of E. globulus for at least 12 months after outplanting at both field sites. At Site 1, however, colonization of new fine roots by the inoculant fungi was low (less than 20% of fine root length). Inoculation had no effect on the growth of E. globulus at this site. In contrast, at Site 2 the inoculant ectomycorrhizal fungi colonized up to 30–50% of new fine root length during the first 6 months after outplanting. There was a corresponding growth response to ectomycorrhizal inoculation at this site, with a close relationship (r2=0.82**) between plant growth at 12 months and root colonization at 3 months. Plant growth at 12 months was related less closely with root colonization at 6 or 12 months. Root colonization by resident ectomycorrhizal fungi increased with time at both field sites. At Site 2, this increase appeared to be at the expense of colonization by the inoculant fungi, which was reduced to less than 10% of fine root length at 12 months. Steaming the soil had little effect on colonization by the inoculant ectomycorrhizal fungi at either field site, but decreased colonization by the resident ectomycorrhizal fungi.  相似文献   

18.
Forge  Thomas  Muehlchen  Andrea  Hackenberg  Clemens  Neilsen  Gerry  Vrain  Thierry 《Plant and Soil》2001,236(2):185-196
Six species of arbuscular mycorrhizal (AM) fungi (Glomus aggregatum, G. clarum, G. etunicatum, G. intraradices, G. mosseae and G. versiforme) were evaluated, in three greenhouse experiments, for their effects on reproduction of the root-lesion nematode, Pratylenchus penetrans, and growth of Ottawa 3 apple rootstock. Glomus mosseae increased total dry weights of nematode-inoculated and non-inoculated rootstock in all three greenhouse experiments, and G. intraradices increased dry weights in two of three greenhouse experiments. Plants inoculated with G. mosseae generally supported fewer P. penetrans per gram of root than plants inoculated with other AM fungi, but did not differ significantly from the controls in any greenhouse experiment. Colonization of roots by AM fungi was reduced by P. penetrans at initial inoculum densities greater than 250 nematodes/L soil. In field trials, preplant inoculation with either G. intraradices or G. mosseae increased rootstock growth and leaf concentrations of P, Mg, Zn and Cu in fumigated plots but not in non-fumigated plots, indicating that colonization by native AM fungi in non-fumigated plots may have been sufficient for adequate nutrient acquisition. The abundance of vesicles and arbuscules was greater in roots of plants inoculated with AM fungi before planting than in roots of non-inoculated plants, in both fumigated and non-fumigated plots. P. penetrans per gram of root and per 50 ml soil were significantly lower for G. mosseae- inoculated plants than for non-inoculated plants in fumigated soil but not in non-fumigated soil.  相似文献   

19.
盐碱胁迫下AM真菌对羊草生长及生理代谢的影响   总被引:1,自引:0,他引:1  
利用盆栽控制试验研究了盐碱胁迫下AM真菌对羊草生长及生理代谢的影响。结果表明,盐碱胁迫显著降低了AM真菌的侵染率与侵染强度,且具有高pH的碱胁迫的抑制效应更强。接种AM真菌一定程度上提高了胁迫下羊草幼苗的生物量及光合色素(Chl a,Chl b和Car)含量。随着盐碱胁迫浓度的增加,羊草幼苗积累了大量的Na~+,并抑制了其对K~+的吸收,接种AM真菌一定程度上降低了Na~+的积累,并缓解了胁迫下K~+含量的降低,提高NO_3~-含量从而改善羊草幼苗的离子平衡。在碱胁迫下,柠檬酸、苹果酸含量均显著提高,在盐胁迫下,仅苹果酸含量显著提高,而接种AM真菌使盐碱胁迫下有机酸含量一定程度降低。在盐碱胁迫条件下,接种AM使羊草体内超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)的活性明显提高,增强宿主植物体内氧自由基的清除能力。接种AM真菌明显提高羊草幼苗抗盐碱能力,因胁迫类型不同,抗逆机理有所差异。研究结果为利用羊草进行生物改良退化盐碱草地以及菌肥的应用提供了科学依据,也为探求羊草-丛枝菌根共生体对盐碱胁迫的响应和反馈提供了数据支持。  相似文献   

20.
Eucalyptus tereticornis was grown in a green house in a low phosphorus (0.67 ppm Olsen's P) soil (Typic Haplustalf) inoculated with mixed indigenous arbuscular mycorrhizal (AM) fungi. Soil was amended to achieve P levels of 10, 20, 25, 30 and 40 ppm to evaluate the growth response and dependence of E. tereticornis to inoculation with AM fungi. A positive response to mycorrhizal inoculation was evident at the first two levels of soil P, i.e., at 0.67 and 10 ppm but not at the higher levels of soil P. Dry matter yield of inoculated plants beyond 20 ppm soil P was similar or even less compared to their uninoculated counterparts. Inoculated plants produced maximum dry matter (root and shoot) at 10 ppm soil P, whereas uninoculated plants did not produce until the level reached 20 ppm. The percentage root length colonized by AM fungi decreased from 31% to 3% as the concentration of P increased beyond 10 ppm soil P. Higher levels of soil P depressed the AM colonization significantly. Inoculated plants had higher shoot P and N contents compared to their uninoculated counterparts at all levels of soil P. However, at the first two lower levels of soil P, inoculated plants showed significantly higher shoot P and N contents over their respective uninoculated counterparts. The increasing shoot P accumulation beyond 10 ppm did not enhance dry matter yields. Inoculated plants had lower values of phosphorus utilization efficiency (PUE) and nitrogen utilization efficiency (NUE) at all levels of soil P except at the unamended level (0.67 ppm) where the inoculated plants showed higher values of NUE compared to uninoculated control plants. Taking dry matter yield into consideration, Eucalyptus plants were found to be highly dependent on 10 ppm of soil P for maximum dry matter production. Any further amendment of P to soil was not beneficial neither for AM symbiosis nor plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号