首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The passage of leukocytes out of the blood circulation and into tissues is necessary for the normal inflammatory response, but it also occurs inappropriately in many pathological situations. This process is limited by the barrier presented by the junctions between adjacent endothelial cells that line blood vessels. Here we show that activation of the Rap1 GTPase in endothelial cells accelerated de novo assembly of endothelial cell-cell junctions and increased the barrier function of endothelial monolayers. In contrast, depressing Rap1 activity by expressing Rap1GAP led to disassembly of these junctions and increased their permeability. We also demonstrate that endogenous Rap1 was rapidly activated at early stages of junctional assembly, confirming the involvement of Rap1 during junctional assembly. Intriguingly, elevating Rap1 activity selectively within endothelial cells decreased leukocyte transendothelial migration, whereas inhibiting Rap1 activity by expression of Rap1GAP increased leukocyte transendothelial migration, providing physiological relevance to our hypothesis that Rap1 augments barrier function of inter-endothelial cell junctions. Furthermore, these results suggest that Rap1 may be a novel therapeutic target for clinical conditions in which an inappropriate inflammatory response leads to disease.  相似文献   

2.
Microbes use numerous strategies to invade the central nervous system. Leukocyte-facilitated entry is one such mechanism whereby intracellular pathogens establish infection by taking advantage of leukocyte trafficking to the central nervous system. Key components of this process include peripheral infection and activation of leukocytes, activation of cerebral endothelial cells with or without concomitant infection, and trafficking of infected leukocytes to and through the blood-brain or blood-cerebrospinal fluid barrier.  相似文献   

3.
PECAM-1 is a 130-kDa member of the immunoglobulin (Ig) superfamily that is expressed on the surface of platelets and leukocytes, and at the intracellular junctions of confluent endothelial cell monolayers. Previous studies have shown that PECAM-1/PECAM-1 homophilic interactions play a key role in leukocyte transendothelial migration, in allowing PECAM-1 to serve as a mechanosensory complex in endothelial cells, in its ability to confer cytoprotection to proapoptotic stimuli, and in maintaining endothelial cell junctional integrity. To examine the adhesive properties of full-length PECAM-1 in a native lipid environment, we purified it from platelets and assembled it into phospholipid nanodiscs. PECAM-1-containing nanodiscs retained not only their ability to bind homophilically to PECAM-1-expressing cells, but exhibited regulatable adhesive interactions that could be modulated by ligands that bind membrane-proximal Ig Domain 6. This property was exploited to enhance the rate of barrier restoration in endothelial cell monolayers subjected to inflammatory challenge. The finding that the adhesive properties of PECAM-1 are regulatable suggests novel approaches for controlling endothelial cell migration and barrier function in a variety of vascular permeability disorders.  相似文献   

4.
To invade a tissue, leukocytes have to overcome the endothelial barrier. Prior to trans-endothelial migration, leukocytes move laterally on the endothelial surface-searching for an emigration site. It is still unclear, how the actual diapedesis step is initiated and whether the endothelium has a decisive role. Here, video-microscopy was employed to investigate, whether lateral migration of leukocytes is correlated to their diapedesis rate. To address the contribution of each cell type, selective stimulation of either leukocytes or endothelial cells with TNFα was performed. Stimulation of endothelial cells alone was sufficient for maximal effects, thereby underlining their decisive role for leukocyte diapedesis. Concomitant to the TNFα-enhanced diapedesis rate, leukocyte adhesion was intensified and, unexpectedly, the lateral leukocyte migration was accelerated.  相似文献   

5.
Leukocyte infiltrates that can serve as viral reservoirs, and sites for viral replication are found in many organs of HIV-1-infected patients. Patients whose blood leukocytes migrate across confluent endothelial monolayers ex vivo and transmit infectious virus to mononuclear leukocytes (MNLs) lodged beneath this endothelial barrier have a worse prognosis. We evaluated the ability of 110- to 120-kDa fibronectin fragments (FNf), which are found in the blood of >60% of HIV-1-infected patients, to stimulate transendothelial migration and drive productively infected MNLs into a potential perivascular space. FNf induced MNLs to release TNF-alpha in a dose-dependent fashion; the resulting increase in lymphocyte and monocyte transendothelial migration could be blocked with soluble TNF receptor I. Rather than penetrate deeply into the subendothelial matrix, as is seen with untreated controls, FNf-treated MNLs clustered just below the endothelial monolayer. Treatment with FNf during migration increased subsequent recovery of HIV-infected cells from the subendothelial compartment. FNf treatment also significantly increased the numbers of HLA-DR(bright), dendritic-type cells that reverse-migrated from the subendothelial depot to the apical endothelial surface 48 h after migration. Fibronectin fragments can be produced by viral and host proteases in the course of inflammatory conditions. The ability of FNf to stimulate transendothelial migration of HIV-1-infected MNLs may help to explain the dissemination of this infection into cardiac, renal, and CNS tissues.  相似文献   

6.
At sites of inflammation, infection or vascular injury local proinflammatory or pathogen-derived stimuli render the luminal vascular endothelial surface attractive for leukocytes. This innate immunity response consists of a well-defined and regulated multi-step cascade involving consecutive steps of adhesive interactions between the leukocytes and the endothelium. During the initial contact with the activated endothelium leukocytes roll along the endothelium via a loose bond which is mediated by selectins. Subsequently, leukocytes are activated by chemokines presented on the luminal endothelial surface, which results in the activation of leukocyte integrins and the firm leukocyte arrest on the endothelium. After their firm adhesion, leukocytes make use of two transmigration processes to pass the endothelial barrier, the transcellular route through the endothelial cell body or the paracellular route through the endothelial junctions. In addition, further circulating cells, such as platelets arrive early at sites of inflammation contributing to both coagulation and to the immune response in parts by facilitating leukocyte–endothelial interactions. Platelets have thereby been implicated in several inflammatory pathologies. This review summarizes the major mechanisms and molecules involved in leukocyte–endothelial and leukocyte-platelet interactions in inflammation.  相似文献   

7.
Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is tightly regulated. Recruitment of blood borne neutrophils to the tissue stroma occurs during early inflammation. In this process, peptide agonists of the chemokine family are assumed to provide a chemotactic stimulus capable of supporting the migration of neutrophils across vascular endothelial cells, through the basement membrane of the vessel wall, and out into the tissue stroma. Here, we show that, although an initial chemokine stimulus is essential for the recruitment of flowing neutrophils by endothelial cells stimulated with the inflammatory cytokine tumour necrosis factor-α, transit of the endothelial monolayer is regulated by an additional and downstream stimulus. This signal is supplied by the metabolism of the omega-6-polyunsaturated fatty acid (n-6-PUFA), arachidonic acid, into the eicosanoid prostaglandin-D2 (PGD2) by cyclooxygenase (COX) enzymes. This new step in the neutrophil recruitment process was revealed when the dietary n-3-PUFA, eicosapentaenoic acid (EPA), was utilised as an alternative substrate for COX enzymes, leading to the generation of PGD3. This alternative series eicosanoid inhibited the migration of neutrophils across endothelial cells by antagonising the PGD2 receptor. Here, we describe a new step in the neutrophil recruitment process that relies upon a lipid-mediated signal to regulate the migration of neutrophils across endothelial cells. PGD2 signalling is subordinate to the chemokine-mediated activation of neutrophils, but without the sequential delivery of this signal, neutrophils fail to penetrate the endothelial cell monolayer. Importantly, the ability of the dietary n-3-PUFA, EPA, to inhibit this process not only revealed an unsuspected level of regulation in the migration of inflammatory leukocytes, it also contributes to our understanding of the interactions of this bioactive lipid with the inflammatory system. Moreover, it indicates the potential for novel therapeutics that target the inflammatory system with greater affinity and/or specificity than supplementing the diet with n-3-PUFAs.  相似文献   

8.
Platelet/endothelial cell adhesion molecule-1 (PECAM-1; CD31), a member of the Ig superfamily, is expressed strongly at endothelial cell-cell junctions, on platelets, and on most leukocytes. CD31 has been postulated to play a role in vasculogenesis and angiogenesis, and has been implicated as a key mediator of the transendothelial migration of leukocytes. To further define the physiologic role of CD31, we used targeted gene disruption of the CD31 gene in embryonic stem cells to generate CD31-deficient mice. CD31-deficient mice (CD31KO) are viable and born at the expected Mendelian frequency, remain healthy, and exhibit no obvious vascular developmental defects. In response to inflammatory challenge, polymorphonuclear leukocytes of CD31KO mice are arrested between the vascular endothelium and the basement membrane of inflammatory site mesenteric microvessels, confirming a role for CD31 in the migration of neutrophils through the subendothelial extracellular matrix. Normal numbers of leukocytes are recovered from inflammatory sites in CD31KO mice, however, suggesting that the defect in leukocyte migration across basal lamina observed in the absence of CD31 may be compensated for by the use of other adhesion molecules, or possibly an increased rate of migration. Homing of T lymphocytes in vivo is normal, and CD31KO mice are able to mount a cutaneous hypersensitivity response normally. In addition, CD31-mediated homophilic adhesion does not appear to play a role in platelet aggregation in vitro. This study provides genetic evidence that CD31 is involved in transbasement membrane migration, but does not play an obligatory role in either vascular development or leukocyte migration.  相似文献   

9.
In this Letter, we first investigated the barrier protective effects of eckol and its derivatives against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice. Data showed that eckol (1) and dieckol (2) inhibited lipopolysaccharide (LPS)-mediated barrier disruption and transendothelial migration of leukocytes to human endothelial cells. Eckol (1) also suppressed acetic acid induced-hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Interestingly, the barrier protective effects of dieckol (2) were better than those of eckol (1) and hydroxyl groups in dieckol (2) positively regulate protective effects.  相似文献   

10.
11.
Autoimmune diseases of the central nervous system (CNS) involve the migration of abnormal numbers of self-directed leukocytes across the blood-brain barrier that normally separates the CNS from the immune system. The cardinal lesion associated with neuroinflammatory diseases is the perivascular infiltrate, which comprises leukocytes that have traversed the endothelium and have congregated in a subendothelial space between the endothelial-cell basement membrane and the glial limitans. The exit of mononuclear cells from this space can be beneficial, as when virus-specific lymphocytes enter the CNS for pathogen clearance, or might induce CNS damage, such as in the autoimmune disease multiple sclerosis when myelin-specific lymphocytes invade and induce demyelinating lesions. The molecular mechanisms involved in the movement of lymphocytes through these compartments involve multiple signalling pathways between these cells and the microvasculature. In this review, we discuss adhesion, costimulatory, cytokine, chemokine and signalling molecules involved in the dialogue between lymphocytes and endothelial cells that leads to inflammatory infiltrates within the CNS, and the targeting of these molecules as therapies for the treatment of multiple sclerosis.  相似文献   

12.
The locations at which vascular endothelial cells recruit leukocytes during physiological or pathological inflammatory responses are influenced by direct effects of local haemodynamics on leukocyte adhesion. However, the expression of genes by endothelial cells, and their ability to respond to inflammatory cytokines also depend on the flow forces to which they are exposed. In addition, cells of the underlying stroma can modify the phenotype and responsiveness of endothelial cells, and hence their ability to recruit leukocytes. Thus, endothelial cells are plastic in their responses, and we hypothesise that the pattern of recruitment of leukocytes to tissues is critically dependent on the variable modulation of the endothelium by the local physicochemical microenvironment.  相似文献   

13.
Neisseria meningitidis elicits the formation of membrane protrusions on vascular endothelial cells, enabling its internalization and transcytosis. We provide evidence that this process interferes with the transendothelial migration of leukocytes. Bacteria adhering to endothelial cells actively recruit ezrin, moesin, and ezrin binding adhesion molecules. These molecules no longer accumulate at sites of leukocyte-endothelial contact, preventing the formation of the endothelial docking structures required for proper leukocyte diapedesis. Overexpression of exogenous ezrin or moesin is sufficient to rescue the formation of docking structures on and leukocyte migration through infected endothelial monolayers. Inversely, expression of the dominant-negative NH(2)-terminal domain of ezrin markedly inhibits the formation of docking structures and leukocyte diapedesis through noninfected monolayers. Ezrin and moesin thus appear as pivotal endothelial proteins required for leukocyte diapedesis that are titrated away by N. meningitidis. These results highlight a novel strategy developed by a bacterial pathogen to hamper the host inflammatory response by interfering with leukocyte-endothelial cell interaction.  相似文献   

14.
Fibromyalgia (FMS), a predominantly female (85%) syndrome, affects an estimated 2% of the US population with skeletal muscle ache, fatigue, headache, and sleep disorder. The pathogenesis of FMS is unknown and there is no laboratory test for diagnosis. In this study, plasma levels of 25 cytokines and chemokines in 92 female patients with FMS and 69 family members were measured compared to 77 controls. Trans-endothelial migration of normal leukocytes in response to FMS plasma and the cytokine profile of human myoblasts were analyzed. High levels of MCP-1 (P < 0.001) and eotaxin (P < 0.01) were found in patients and family members compared to controls. Patients (56/92) treated with the single agent guaifenesin (>3 months) had higher levels of eotaxin than those not treated (P < 0.01). Diluted plasma from patients increased the migration of normal eosinophils and monocytes, but not neutrophils, through an endothelial/Matrigel barrier only when mast cells are included in the lower wells (P < 0.05). Furthermore, myoblasts can secrete MCP-1, eotaxin, and IP-10, while treatment with MCP-1 caused secretion of IL-1beta, eotaxin and IP-10. FMS is associated with inflammatory chemokines, that MCP-1 and eotaxin may contribute to the symptoms of FMS, and that similar cytokine profiles found in family members support the idea that FMS has a genetic component. Furthermore, the chemokine profile associated with FMS has direct effects on the migration of eosinophils and monocytes in the presence of mast cells, and skeletal muscle itself may secrete.  相似文献   

15.
Junctional Adhesion Molecule A (JAM-A) is a member of the Ig superfamily of membrane proteins expressed in platelets, leukocytes, endothelial cells and epithelial cells. We have previously shown that in endothelial cells, JAM-A regulates basic fibroblast growth factor, (FGF-2)-induced angiogenesis via augmenting endothelial cell migration. Recently, we have revealed that in breast cancer cells, down-regulation of JAM-A enhances cancer cell migration and invasion. Further, ectopic expression of JAM-A in highly metastatic MDA-MB-231 cells attenuates cell migration, and down-regulation of JAM-A in low-metastatic T47D cells enhance migration. Interestingly, JAM-A expression is greatly diminished as breast cancer disease progresses. The molecular mechanism of this function of JAM-A is beyond its well-characterized barrier function at the tight junction. Our results point out that JAM-A differentially regulates migration of endothelial and cancer cells.  相似文献   

16.
We investigated the migration of human leukocytes through endothelial cells (EC), and particularly their underlying basement membrane (BM). EC were cultured for 20 days on 3 μm-pore filters or collagen gels to form a distinct BM, and then treated with tumour necrosis factor-α, interleukin-1β or interferon-γ. Neutrophil migration through the cytokine-treated EC and BM was delayed for 20-day compared to 4-day cultures. The BM alone obstructed chemotaxis of neutrophils, and if fresh EC were briefly cultured on stripped BM, there was again a hold-up in migration. In studies with lymphocytes and monocytes, we could detect little hold-up of migration for 20-day versus 4-day cultures, in either the filter- or gel-based models. Direct microscopic observations showed that BM also held-up neutrophil migration under conditions of flow. Treatment of upper and/or lower compartments of filters with antibodies against integrins, showed that neutrophil migration through the endothelial monolayer was dependent on β2-integrins, but not β1- or β3-integrins. Migration from the subendothelial compartment was supported by β1- and β2-integrins for all cultures, but blockade of β3-integrin only inhibited migration effectively for 20-day cultures. Flow cytometry indicated that there was no net increase in expression of β1- or β3-integrins during neutrophil migration, and that their specific subendothelial function was likely dependent on turnover of integrins during migration. These studies show that BM is a distinct barrier to migration of human neutrophils, and that β3-integrins are particularly important in crossing this barrier. The lesser effect of BM on lymphocytes and monocytes supports the concept that crossing the BM is a separate, leukocyte-specific, regulated step in migration.  相似文献   

17.
Inflammation has developed in the course of evolution as a process to defend the body against invading microbes and to respond to injuries. Several mechanisms of interaction between endothelial cells and leukocytes have evolved to render inflammation an effective, tightly controlled, and self-limited process. Imperfect executions of this "game plan" lead to pathological abnormalities resulting in diseases. The meeting on Molecular Mechanisms of Inflammation held at Schloss Elmau, Germany in October 2002 has featured activation of endothelial cells, adhesion and migration of leukocytes, as well as receptor pathways for activation and deactivation of leukocytes and, concomitantly, of the inflammatory response. Thus, a review on some of the presented data casts interesting spotlights on different steps of the inflammatory cascade.  相似文献   

18.
The inflammatory response in the CNS begins with the movement of leukocytes across the blood-brain barrier in a multistep process that requires cells to pass through a perivascular space before entering the parenchyma. The molecular mechanisms that orchestrate this movement are not known. The chemokine CXCL12 is highly expressed throughout the CNS by microendothelial cells under normal conditions, suggesting it might play a role maintaining the blood-brain barrier. We tested this hypothesis in the setting of experimental autoimmune encephalomyelitis (EAE) by using AMD3100, a specific antagonist of the CXCL12 receptor CXCR4. We demonstrate that the loss of CXCR4 activation enhances the migration of infiltrating leukocytes into the CNS parenchyma. CXCL12 is expressed at the basolateral surface of CNS endothelial cells in normal spinal cord and at the onset of EAE. This polarity is lost in vessels associated with an extensive parenchymal invasion of mononuclear cells during the peak of disease. Inhibition of CXCR4 activation during the induction of EAE leads to loss of the typical intense perivascular cuffs, which are replaced with widespread white matter infiltration of mononuclear cells, worsening the clinical severity of the disease and increasing inflammation. Taken together, these data suggest a novel anti-inflammatory role for CXCL12 during EAE in that it functions to localize CXCR4-expressing mononuclear cells to the perivascular space, thereby limiting the parenchymal infiltration of autoreactive effector cells.  相似文献   

19.
Leukocyte recruitment from blood to inflammatory sites occurs in a multistep process that involves discrete molecular interactions between circulating and endothelial cells. Junctional adhesion molecule (JAM)-C is expressed at different levels on endothelial cells of lymphoid organs and peripheral tissues and has been proposed to regulate neutrophil migration by its interaction with the leukocyte integrin Mac-1. In the present study, we show that the accumulation of leukocytes in alveoli during acute pulmonary inflammation in mice is partially blocked using neutralizing Abs against JAM-C. To confirm the function of JAM-C in regulating leukocyte migration in vivo, we then generated a strain of transgenic mice overexpressing JAM-C under the control of the endothelial specific promotor Tie2. The transgenic animals accumulate more leukocytes to inflammatory sites compared with littermate control mice. Intravital microscopy shows that this is the result of increased leukocyte adhesion and transmigration, whereas rolling of leukocytes is not significantly affected in transgenic mice compared with littermates. Thus, JAM-C participates in the later steps of the leukoendothelial adhesion cascade.  相似文献   

20.
During an inflammatory response induced by infection or injury, leukocytes traverse the endothelial barrier into the tissue space. Extravasation of leukocytes is a multistep process involving rolling, tethering, firm adhesion to the endothelium, and finally, transendothelial migration, the least characterized step in the process. The resting endothelium is normally impermeable to leukocytes; thus, during inflammation, intracellular signals that modulate endothelial permeability are activated to facilitate the paracellular passage of leukocytes. Using a static in vitro assay of neutrophil transmigration across human umbilical vein endothelium, a panel of inhibitors of intracellular signaling was screened for their ability to inhibit transmigration. PD98059, a specific inhibitor of extracellular signal-regulated kinase (ERK) 1/2 activation, inhibited both transmigration across TNF-alpha-activated endothelium and transmigration induced by the chemoattractant fMLP in a dose-dependent manner. PD98059 did not inhibit neutrophil chemotaxis in the absence of an endothelial barrier nor neutrophil adhesion to the endothelium, suggesting that its effect was on the endothelium, and furthermore, that endothelial ERK activation may be important for transmigration. We demonstrate in this study that endothelial ERK is indeed activated during neutrophil transmigration and that its activation is dependent on the addition of neutrophils to the endothelium. Further characterization showed that the trigger for endothelial ERK activation is a soluble protein of molecular mass approximately 30 kDa released from neutrophils after activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号