首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of AHN 086 and its reversibly acting structural analogue Ro 5-4864 were studied in the spontaneously beating guinea-pig atria and field-stimulated guinea-pig ileal longitudinal smooth muscle in the presence and absence of dihydropyridine calcium channel modulators. The treatment of guinea-pig atria with AHN 086 followed by extensive washing did not alter contraction. However, AHN 086 (0.5 microM) potentiated (88%) the positive inotropic responses by BAY K 8644, an effect that was not reversed by extensive washing of the tissue. Higher concentrations of AHN 086 (greater than 2 microM) irreversibly inhibited the intropic, but not the chronotropic responses to BAY K 8644, nifedipine, and isoproterenol. Ro 5-4864 (10 microM) produced a reversible enhancement of the inotropic responses and block of the chronotropic responses to BAY K 8644. In guinea-pig ileal longitudinal smooth muscle, both AHN 086 and Ro 5-4864 reversibly inhibited field-stimulated contractions. Neither Ro 5-4864 nor AHN 086 affected the ability of nifedipine to inhibit field-stimulated contractions of ileal longitudinal smooth muscle. Treatment of intact atrial with 5 microM AHN 086 followed by extensive washing resulted in a significant inhibition (30-50%) of [3H]Ro 5-4864 binding to peripheral benzodiazepine receptors and of [3H]nitrendipine binding to voltage-operated calcium channels, but did not affect [3H]dihydroalprenolol binding to beta-adrenergic receptors on atrial membranes. The same treatment applied to intact ileal longitudinal smooth muscle affected neither [3H] (-)-quinuclidinyl benzilate binding to muscarine receptors nor [3H]nitrendipine binding, but did result in a significant inhibition (30-50%) of [3H]Ro 5-4864 binding to ileal longitudinal smooth muscle membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The actions of a series of 15 Ca2+ channel antagonists including D-600, nifedipine, and diltiazem were examined against K+ depolarization and muscarinic receptor induced responses in guinea pig bladder smooth muscle. Responses of bladder are very dependent upon extracellular Ca2+ and sensitive to the Ca2+ channel antagonists, the tonic component more than the phasic component of response. Regardless of stimulant, K+ or methylfurmethide (MF), or component of response, the same rank order of antagonist activities is expressed, suggestive of a single structure-activity relationship and the existence of a single category of binding site which may, however, exist in several affinity states. High affinity binding of [3H]nitrendipine (KD = 1.1 X 10(-10) M) occurs in bladder membranes, and similar high affinity binding was found in microsomal preparations from other smooth muscles including guinea pig and rat lung, rat vas deferens, uterus, and stomach. [3H]nitrendipine binding in the bladder was sensitive to displacement by other 1,4-dihydropyridines, paralleling their pharmacologic activities and showing excellent agreement with binding data previously obtained for guinea pig ileal smooth muscle. Comparison of pharmacologic data for inhibition of K+- and MF-induced responses by a common series of Ca2+ channel antagonists in bladder and ileum revealed excellent correlations. Neither pharmacologic nor binding studies suggest significant differences in Ca2+ channel antagonist properties in smooth muscle from bladder and intestine.  相似文献   

3.
In primary cultures of cerebellar granule cells, [3H]nitrendipine binds with high affinity to a single site (KD 1 nM and Bmax 20 fmol/mg protein). The 1,4-dihydropyridine (DHP) class of compounds such as nitrendipine, nifedipine, and BAY K 8644 displace [3H]nitrendipine binding at nanomolar concentrations. Verapamil partially inhibits whereas diltiazem slightly increases the [3H]nitrendipine binding. In these cells, the calcium influx that is induced by depolarization is very rapid and is blocked by micromolar concentrations of inorganic calcium blockers such as cadmium, cobalt, and manganese. The calcium influx resulting from cell depolarization is potentiated by BAY K 8644 and partially inhibited (approximately 40%) by nitrendipine and nifedipine. Other non-DHP voltage-sensitive calcium channel (VSCC) antagonists, such as verapamil and diltiazem, completely blocked the depolarization-induced calcium influx. This suggested that nitrendipine and nifedipine block only a certain population of VSCCs. In contrast, verapamil and diltiazem do not appear to be selective and block all of VSCCs. Perhaps some VSCCs can be allosterically modulated by the binding site for the DHPs, whereas verapamil and diltiazem may block completely the function of all VSCCs by occupying a site that differs from the DHP binding site.  相似文献   

4.
In the present work, we have studied the effect of ruthenium red (RuR), La3+ and 4-aminopyridine (4-AP) on the specific binding of (+)-[3H]PN200-110 to synaptosomes, as well as the effect of nitrendipine, nifedipine, and BAY K 8644 on gamma-[3H]aminobutyric acid [( 3H]GABA) release induced by potassium depolarization and by 4-AP in synaptosomes. Scatchard plots indicated that neither RuR nor 4-AP modifies the KD and Bmax of [3H]PN200-110 specific binding, whereas La3+ decreased the Bmax by about 25%; when the effect of the drugs on the total binding of PN200-110 was studied, a similar inhibition by La3+ was found. The calcium antagonists, nitrendipine and nifedipine, did not affect at all the potassium-stimulated release of [3H]GABA nor its release induced by 4-AP. The calcium agonist BAY K 8644 failed to affect both the spontaneous and the potassium-stimulated GABA release. Our results suggest that the binding sites of dihydropyridines in presynaptic membranes are not related to the calcium channels involved in neurotransmitter release with which RuR, La3+, and 4-AP interact.  相似文献   

5.
The presence of benzodiazepine binding sites in rat vas deferens was detected using [3H]Ro 5-4864 as a radioligand. The binding of [3H]Ro 5-4864 to the mitochondrial sites is saturable, reversible, and temperature and time dependent. The association rate constant (k1) was 8.7 +/- 0.7 x 10(7) M-1 min-1, and the dissociation rate constant (k-1) was 0.031 +/- 0.003 min-1. The dissociation constant (KD) determined by saturation binding was 5.22 +/- 0.56 nM. The density of binding was 4,926 +/- 565 fmol/mg of protein. The Hill coefficient of binding was 0.99 +/- 0.01, an indication that [3H]Ro 5-4864 binds to a single site. The [3H]Ro 5-4864 binding was inhibited competitively by Ro 5-4864 and 2-hydroxy-5-nitrobenzyl-6-thioguanosine and noncompetitively by PK 11195, nitrendipine, alpha,beta-methylene-ATP, and carboxyatractyloside and was not affected by clonazepam, dicyclohexylcarbodiimide, or protoporphyrin IX. Our data indicate that [3H]Ro 5-4864 binding sites are not identical to those labeled by PK 11195. These binding sites are modulated by the ADP/ATP mitochondrial carrier, and an interaction of dihydropyridines and [3H]Ro 5-4864 binding sites in rat vas deferens is suggested.  相似文献   

6.
The physiologic regulation of aldosterone secretion is dependent on extracellular calcium and appears to be mediated by increases in cytosolic free calcium concentration in the zona glomerulosa cell. A specific role for voltage-dependent calcium channels was suggested by previous studies with the calcium channel antagonist verapamil. We therefore studied the [3H]nitrendipine calcium channel binding site in adrenal capsules. These studies revealed a single class of saturable, high affinity sites with KD = .26 +/- .04 nM and Bmax = 105 +/- 5.7 fmol/mg protein. Specific binding of [3H]nitrendipine was inhibited by calcium channel antagonists with potencies nitrendipine = nifedipine much greater than verapamil, while diltiazem had no inhibitory effect. In the rat, binding sites for [3H]nitrendipine were located in the adrenal capsule and medulla and were undetectable in the zona fasciculata. Physiologic studies with collagenase-dispersed adrenal glomerulosa cells demonstrated that nifedipine selectively inhibited angiotensin-II and potassium-stimulated steroidogenesis. These observations suggest both a pharmacologic and physiologic role for the nitrendipine binding site in aldosterone production.  相似文献   

7.
Abstract

The effects of incubation temperature and allosteric modulators were studied on [3H]nitrendipine binding to guinea-pig cardiac membranes. Incubation temperature only slightly affected the ability of nifedipine and verapamil derivatives to inhibit binding. By contrast, the Ca2+ channel blockers d-cis-diltiazem and fostedil (KB-944) stimulated [3H]nitrendipine binding in a temperature-dependent manner (37° > 25° > 4° C). The stimulatory effect of fostedil could be related to a decrease (2.3-fold at 37° C) in the rate of radioligand binding site dissociation, without significant effects on association kinetics. Both fostedil and d-cis-diltiazem caused a shift to the right of the concentration-inhibition curve of tiapamil, a negative allosteric modulator of [3H]nitrendipine binding. Neither compound affected the ability of nifedipine, a competitive antagonist, to inhibit radioligand binding. This selective effect of fostedil or d-cis-diltiazem may be useful for testing whether potential Ca2+ channel blockers interact in a competitive as opposed to allosteric manner with the dihydropyridine site. Varying the incubation temperature may also be useful in detecting compounds which act as positive allosteric modulators (stimulators) of dihydropyridine binding.  相似文献   

8.
Calcium antagonist binding sites were solubilized from rat brain membranes using the detergent 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate (CHAPS). CHAPS-solubilized [3H]nitrendipine binding sites are saturable over a range of 0.05-4 nM and Scatchard analysis reveals a single, high-affinity (KD = 0.49 +/- 0.10 nM), low-capacity (Bmax = 56 +/- 4 fmol/mg of protein) binding site. Reversible ligand competition experiments using solubilized binding sites demonstrated appropriate pharmacologic specificity, with dihydropyridines (nifedipine = nitrendipine greater than Bay K 8644) completely displacing binding, verapamil partially displacing binding, and diltiazem enhancing binding, as previously described in membrane preparations. Lyophilized Crotalus atrox venom was purified by ion exchange chromatography followed by gel filtration to a single peptide band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis. This fraction of molecular weight 60,000 competitively inhibits [3H]nitrendipine binding to both membrane and soluble preparations with an IC50 of 5 micrograms/ml. This polypeptide should serve as a useful ligand for future efforts in purifying the dihydropyridine calcium channel binding site in brain.  相似文献   

9.
Binding of 125I-omega-conotoxin GVIA and [3H]nitrendipine to membranes from bovine adrenal medulla was investigated to test for the presence of N- and L-type Ca2+ channels in adrenal chromaffin cells. Saturable, high-affinity binding sites for 125I-omega-conotoxin and [3H]nitrendipine were detected in a membrane fraction from adrenal medulla. [3H]Nitrendipine binding sites were found to have a KD of 500 +/- 170 pM and a Bmax of 26 +/- 11 pmol/g of protein. 125I-omega-Conotoxin binding sites had a KD of 215 +/- 56 pM and a Bmax of 105 +/- 18 pmol/g of protein, about four times the number of sites found for [3H]nitrendipine. 125I-omega-Conotoxin binding was potently inhibited by unlabeled toxin and Ca2+ but was unaffected by dihydropyridines, verapamil, and diltiazem. [3H]Nitrendipine binding was not affected by omega-conotoxin, whereas it was inhibited by other dihydropyridines. Bay K 8644 potentiated K+-evoked cytosolic Ca2+ transients measured by fura-2 fluorescence, and this potentiation was completely blocked by nifedipine. In contrast, omega-conotoxin had no effect on Bay K 8644-evoked Ca2+ transients. Thus, the binding sites for omega-conotoxin and for nitrendipine appear to be different. The results confirm the presence of L-type Ca2+ channels and open the possibility of N-type Ca2+ channels as the omega-conotoxin binding sites in chromaffin cell membranes.  相似文献   

10.
Detailed kinetic and equilibrium studies of the binding of two radiolabeled 1,4-dihydropyridine calcium antagonists to putative calcium channels in rat brain membranes were performed. (+/-)-[3H]Nitrendipine, a racemic ligand, and (+)-[3H]isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1, 4-dihydro-2,6-dimethyl-5-methoxycarbonylpyridine-3-carboxylate (PN200-110), a pure isomer, were used and their binding properties were quantitated and compared. Analysis of equilibrium binding revealed a single high affinity component for each radioligand with the same density of binding sites for both ligands. Association rates were determined over a 60-fold range of concentration of each radioligand. For both radioligands, the pseudo-first order association time courses were biphasic with the rate of the faster component dependent on radioligand concentration and the rate of the slower component independent of both the structure of the radioligand and the concentration of the radioligand. Dissociation rates were determined after various times of association. The dissociation of the optically pure radioligand, (+)-[3H]PN200-110, was monophasic at all association times, consistent with a single bound species being present throughout association. However, (+/-)-[3H]nitrendipine dissociation was biphasic after short association times (1-10 min). The biphasic dissociation observed with (+/-)-[3H]nitrendipine is consistent with the two optical isomers binding with approximately the same association rate but having different dissociation rates. These results appear to reflect the existence of two interconvertible binding states of the putative calcium channel in the membrane, one which binds the radioligands with high affinity in a simple bimolecular reaction and one which has no detectable affinity for the ligands. This mechanism of isomerization before ligand binding has been modeled by numerical solution of the differential equations of the scheme providing estimates of the rate constants for each reaction in the scheme.  相似文献   

11.
Two distinct and interdependent binding sites for inhibitors of voltage-dependent Ca2+ channels have been identified. They include one site for molecules of the 1,4-dihydropyridine serie such as nitrendipine, nifedipine or PN200-110 and one site for a chemically heterogenous group of compounds comprising verapamil, D600 and desmethoxyverapamil, bepridil and diltiazem. Ca2+ binds to its own coordination site which is distinct from the receptor site for organic Ca2+ channel inhibitors. The molecular size of the native [3H] nitrendipine receptor of transverse tubule membrane, brain and heart, have been determined using the radiation inactivation technique. The [3H] nitrendipine receptor is found to have a Mr of 210,000 +/- 20,000. CHAPS solubilization and purification indicate that the dihydropyridine receptor contains polypeptides of apparent molecular weights of 142,000, 32,000 and 33,000 which copurifie with (+) [3H] PN200-110 binding activity. Two stages in which there is an increased binding of [3H]nitrendipine have been observed during chick myogenesis. The first one occurs during embryonic life and has the same properties as in the in vitro development. The second stage occurs near hatching and corresponds to a large increase in the number of nitrendipine receptors. This increase is accompanied by a decrease in the affinity of nitrendipine for its receptor by a factor of 4 to 10. The second stage of development is partly under innervation control and its expression is modulated by the intracellular cyclic AMP content. The two dihydropyridines Bay K8644 and CGP 28932 work preferentially on polarized membranes. 45Ca2+ flux experiments yielded results which are in good agreement with electrophysiological, contraction and binding data obtained with rat cardiac cells and skeletal muscle cells.  相似文献   

12.
The voltage-sensitive calcium channel in cultured chick neural retina cells was characterized by the actions of the enantiomers of Bay K 8644 and 202-791 and other 1,4-dihydropyridines. These cells showed time- and voltage-dependent Ca2+ uptake that was stimulated by K+ depolarization and blocked by the inorganic calcium channel blockers Cd2+ and Co2+. A small fraction only (15% maximum) of the uptake was inactivated by predepolarization of the cells with 80 mM K+. Ca2+ uptake was sensitive to the 1,4-dihydropyridine calcium channel antagonists and activators. (S)-Bay K 8644 and (S)-202-791 stimulated the Ca2+ uptake, and (R)-Bay K 8644 and (R)-202-791 as well as nitrendipine and PN 200-110 inhibited Ca2+ uptake stimulated by K+ depolarization or channel activators. The K+ depolarization-stimulated uptake was inhibited by 90%, but the activator-stimulated uptake was completely blocked by the 1,4-dihydropyridine antagonists. The potencies of these agents as inhibitors of Ca2+ uptake were significantly lower than the binding affinities in membrane preparations from the same cells or their binding and pharmacologic affinities in vascular smooth muscle. K+ depolarization or (S)-Bay K 8644 induced 45Ca2+ uptake was not observed in a glial cell culture. [3H]Nitrendipine and [3H]PN 200-110 bound to membrane preparations of the cells consistent with the presence of a single type of high affinity binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of bacitracin were investigated on [3H]nitrendipine binding to rat brain and cardiac membranes in a low ionic strength (5 mM Tris-HCl) buffer. Bacitracin inhibited [3H]nitrendipine binding to rat brain and cardiac membranes with IC50 values of 400 +/- 100 and 4600 +/- 400 micrograms/mL, respectively. Scatchard analysis in brain membranes revealed that bacitracin inhibited [3H]nitrendipine binding primarily by reducing the Bmax but also by producing a small increase in the Kd. In brain membranes, Na+ (100 mM) and Ca2+ (2 mM) reduced the potency of bacitracin to inhibit [3H]nitrendipine binding by approximately sixfold with IC50 values of 2600 +/- 300 and 2100 +/- 400 micrograms/mL observed for bacitracin in the presence of 100 mM Na+ and 2 mM Ca2+, respectively. The EC50 values for the effects of Na+ and Ca2+ were 800 +/- 200 microM and 25 +/- 5 mM. K+, Mg2+, choline, and increasing the assay buffer of Tris-HCl to 50 mM also decreased the inhibition of [3H]nitrendipine binding by bacitracin. These results suggest that bacitracin specifically modulates [3H]nitrendipine binding in a cation-dependent manner and that brain and cardiac dihydropyridine binding sites are either biochemically different or exist in a different membrane environment.  相似文献   

14.
The nitrendipine receptor associated with the voltage-dependent calcium channel from rabbit skeletal muscle transverse tubule membranes has been solubilized by detergent extraction. A highly stable solubilized receptor preparation was obtained using 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate as detergent with phospholipids or glycerol present as stabilizing agents. Binding of [3H]nitrendipine to the solubilized receptor was reversible and saturable. At 4 degrees C the equilibrium dissociation constant of the [3H]nitrendipine X receptor complex was 7 +/- 3 nM and was close to that determined from the rate constants of association (k1 = 1.3 10(5) M-1 s-1) and dissociation (k-1 = 1.10 X 10(-3) s-1) of 8.4nM. The nitrendipine concentration that gave a half-maximal inhibition of [3H]nitrendipine binding to the solubilized receptor was 10 nM, which was similar to the values for the dissociation constant determined for the radiolabelled ligand. [3H]Nitrendipine binding to its solubilized receptor was also inhibited by other antiarrythmic drugs, such as bepridil and verapamil, and enhanced by d-cis-diltiazem. Since these drugs are apparent non-competitive inhibitors of [3H]nitrendipine binding it was concluded that these different binding sites are tightly coupled. Sucrose density sedimentation of solubilized nitrendipine receptor resulted in the separation of three [3H]nitrendipine binding activities with apparent sedimentation coefficients of 11.4 S, 14.4 S and 21 S.  相似文献   

15.
The properties of interaction of the Ca2+ channel antagonist [3H]nitrendipine have been investigated in chick hearts at various stages of in ovo and post-natal development and in cultured cells. The dissociation constant of the [3H]nitrendipine-receptor complex is between 0.4 nM and 0.5 nM for intact ventricle and cultured cells. [3H]Nitrendipine binding is antagonized by nitrendipine analogs. The order of efficacy of the different dihydropyridine molecules is nitrendipine greater than nimodipine greater than nifedipine greater than nisoldipine with Kd values ranging from 0.5 to 4 nM. Inhibition of [3H]nitrendipine binding by other antiarrhythmic molecules like amiodarone, F13004 and bepridil was observed. Half-maximum inhibitions (K0.5) were found for verapamil and D600 at concentrations between 0.23 and 0.26 microM. The potency of organic Ca2+ blockers to depress by 50% the maximum amplitude of spontaneous beating of heart cells is closely related to K0.5 values obtained from [3H]nitrendipine binding experiments. Electrophysiological results indicate that the slow channel is insensitive to nitrendipine at the younger stage of development (3-day-old) whereas, in adult like cells, nitrendipine (50 nM) abolished both slow action potential due to the slow Ca2+ channel and contraction. The maximum binding capacity for [3H]nitrendipine is found to increase during development of the embryonic heart from 40 fmol/mg protein at day 3 to 100 fmol/mg protein at day 14, to stay relatively stable until day 18. Then the number of sites increases rapidly to reach a second plateau at 210 fmol/mg protein on day 4 after hatching. Treatment with 6-hydroxydopamine results in 35% increase in [3H]nitrendipine binding, whereas reserpine treatment is without effect. Developmental properties of nitrendipine-sensitive Ca2+ channels have been compared with those of tetrodotoxin-sensitive Na+ channels and muscarinic receptors. These results indicate that nitrendipine receptors exist at the early stage of development (3-day-old-hearts) but that they do not correspond to functional slow Ca2+ channels, that in ovo development corresponds both to an increase of the number of [3H]nitrendipine receptors and to the transformation of silent Ca2+ channels into functional Ca2+ channels, and that there is a regulation of the level nitrendipine-sensitive Ca2+ channels by innervation.  相似文献   

16.
We investigated the effect of amiloride on alpha-adrenoreceptors (alpha 1 and alpha 2) using radioligand binding techniques. Amiloride inhibited [3H]yohimbine and [3H]prazosin binding to alpha 2- and alpha 1-adrenoreceptors, respectively, from various tissues in a concentration-dependent manner. Amiloride was approximately 9-12 times more potent in inhibiting [3H]yohimbine binding to alpha 2-adrenoreceptors from rat tissues than from other mammalian tissues. However, it had almost the same potency in inhibiting [3H]prazosin binding to alpha 1-adrenoreceptors from rat as well as other mammalian tissues. Further, in rat tissues, amiloride was approximately 10 times more potent in inhibiting [3H]yohimbine than [3H]prazosin binding. Amiloride inhibited [3H]yohimbine binding noncompetitively and [3H]prazosin binding competitively. The inhibition of [3H]yohimbine and [3H]prazosin binding by amiloride was reversible. Since amiloride has been shown to be an inhibitor of Na+-H+ exchanger protein, we believe that it regulates the alpha 2-adrenoreceptors by binding to Na+ -H+ exchanger protein. Triamterene, a compound similar to amiloride in regard to diuretic effect, had very little effect on [3H]yohimbine and [3H]prazosin binding to rat kidney membranes, suggesting that the alpha-adrenoreceptor antagonistic properties of amiloride are not related to its antikaliuretic effect. The results of the present study suggest that some of the pharmacological actions of amiloride (antihypertensive and diuretic effects) can be explained in part by its regulatory effect on both alpha 1- and alpha 2-adrenoreceptors.  相似文献   

17.
Binding of [3H]nitrendipine, [3H]nimodipine, and (+)[3H]PN 200-110 to microsomal preparations of guinea pig smooth and cardiac muscle and brain synaptosomes revealed high affinity interaction with KD values in the sequence, (+)PN 200-110 greater than nitrendipine greater than nimodipine. Bmax values for a particular tissue were independent of the 1,4-dihydropyridine employed in radioligand binding at 25 degrees C. The temperature dependence of [3H]nitrendipine binding in cardiac and smooth muscle microsomal preparations and brain synaptosomes was measured from 0 degrees to 37 degrees C and for skeletal muscle preparations from 0 degrees to 30 degrees C. Bmax values increased with temperature for cardiac membranes, but did not vary in other tissues. van't Hoff plots were nonlinear in all tissues, enthalpy and entropy changes becoming increasingly negative with increasing temperature. Competition binding of the activator-antagonist enantiomeric 1,4-dihydropyridine pairs of Bay k 8644 and PN 202-791 for [3H]nitrendipine in smooth muscle did not reveal significant thermodynamic differences between activator and antagonist molecules.  相似文献   

18.
The effects of estrogen and progesterone domination, achieved by administering estrogen (E) and estrogen plus progesterone (E + P), on rat uterine reactivity to Ca2+ and to Ca2+ channel ligands (antagonist and activator) were compared. The inhibitory activities of nifedipine, diltiazem, and D 600 against K+ depolarization-induced responses were not significantly different between E- and E + P-dominated states in longitudinal or circular muscle preparations. Tonic responses were significantly more sensitive than phasic responses, but the rank orders of activity for a series of 14 antagonists were identical, suggesting the existence of a common structure-activity relationship which paralleled that seen previously in other smooth muscles. E + P-dominated uteri were slightly more sensitive to Ca2+ responses in K+ depolarizing media, but pA2 values for nifedipine, diltiazem, and D 600 inhibition were not significantly different in tissues from animals in either hormone-dominated state. Binding of [3H]nitrendipine did not differ between hormonal states. Responses to Bay K 8644 were larger in E + P-dominated uteri but the binding density was twofold greater in the E-dominated uterus. This study suggests that pathways of Ca2+ mobilization through potential-dependent Ca2+ channels in rat uterus are not significantly altered between E- and E + P-dominated environments.  相似文献   

19.
Chick neural retina cells contain functional L-type voltage-dependent Ca2+ channels sensitive to 1,4-dihydropyridines. To investigate the effects of chronic depolarization, cells were grown in medium containing elevated K+. After 4-h to 4-day treatments with elevated K+ (12-73 mM), there was a concentration-dependent decrease in high affinity [3H]PN200-110 binding. Saturation analysis of cells treated for 4 days with 40 mM K+ showed a reduction in maximum ligand binding with no change in affinity. Control and experimental Bmax values were 70.7 +/- 6.4 and 42.2 +/- 4.5 fmol/mg protein, respectively, and control and experimental KD values were 70.2 +/- 7.4 and 68.6 +/- 7.4 x 10(-12) M. The effect of chronic depolarization was time-dependent, reversible, and without effect on cellular protein content. Reduction in 45Ca2+ uptake following chronic depolarization correlated well with the reduction in [3H]PN200-110 binding. The calcium ionophore A23187, 10(-6) M for 24 h, also decreased the binding site density. The calcium channel antagonist D600 had no effect alone on [3H]PN200-110 binding; however, D600 blocked the down-regulation of calcium channels induced by chronic depolarization. The mechanism for Ca2+ channel down-regulation may involve calcium entry, since the effect was blocked by D600 and mimicked by the calcium ionophore A23187. Chronic depolarization with either elevated K+ or veratridine, or chronic treatment with A23187 had no effect on calcium channels in rat neonatal ventricular myocytes, although these cells express functional channels of the 1,4-dihydropyridine-sensitive class.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The Ca2+ channel antagonists D-600, diltiazem, and nifedipine are competitive antagonists of Ca2+ responses in K+-depolarized guinea pig taenia coli and rat mesenteric artery preparations. pA2 values for D-600, diltiazem, and nifedipine in taenia coli were 8.28, 7.44, and 9.27, respectively and in mesenteric artery, 9.6, 7.83, and 10.4, respectively. The combination of nifedipine plus diltiazem gave in both tissues antagonism greater than that calculated on the basis of additivity. This suggests, consistent with published 3H-labelled radioligand binding data, that diltiazem and nifedipine interact at distinct sites. However, the combination nifedipine plus D-600 yielded antagonism consistent with additivity of response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号